Биомеханический анализ ударных воздействий. Биомеханический анализ

Биомеханика как дисциплина делится на три раздела: общую, дифференциальную и частную.

  1. Общая биомеханика решает теоретические проблемы и помогает понять как и почему человек движется.
  2. Дифференциальная биомеханика изучает индивидуальные и групповые особенности двигательных возможностей и двигательной деятельности в зависимости от возраста,пола,состояния здоровья. уровня физической подготовленности, спортивной квалификации и т.п.
  3. Частная биомеханика рассматривает конкретные вопросы технической и тактической подготовки в отдельных видах спорта и массовой физкультуры. Основной вопрос частной биомеханики – как научить человека правильно выполнять движения.

Закономерности механического движения человека биомеханика изучает на трех уровнях: движение –двигательное действие –двигательная деятельность.

На первом уровне фактические данные для исследования движений получают в экспериментах с изолированными мышцами и другими частями тела животных.

Здоровый человек выполняет целенаправленные и мотивированные двигательные действия. На этом уровне биомеханика изучает и совершенствует технику двигательных действий (например, технику удара, прыжка шага и т.п.)

Третий уровень биомеханики посвящен тактике двигательной деятельности. При выполнении физических упражнений двигательная деятельность складывается из двигательных действий, как цепь из звеньев (например, бег состоит из отдельных шагов)

Двигательные действия в такой цепи взаимосвязаны и взаимообусловлены.. Поэтому двигательная деятельность –это система двигательных действий.

Спортивная биомеханика изучает двигательные действия человека при выполнении им спортивных упражнений. Это необходимо для обеспечения роста спортивных результатов вплоть до рекордных для конкретного спортсмена или определенного вида спорта, выявления помогающих или препятствующих факторов при совершенствовании движений.

Основные задачи спортивной биомеханики состоят в следующем:

1.Совершенствование спортивной техники, моделирование и конструирование ее наиболее рациональных вариантов.

2.Биомеханический контроль техники отдельных спортсменов.

3. Выявление биомеханических закономерностей совершенствования двигательных действий.

4.Прогнозирование тенденций изменения параметров техники выполнения спортивных упражнений по мере роста спортивного мастерства для оценки этапных и конечных показателей..

5. Разработка тренажеров для спорта.

6. Совершенствование спортивного инвентаря.

  1. Механическое движение в живых системах

Принято различать простые формы движения материи- механическую, физическую и химическую. Они проявляются в живой и неживой природе. Высшие формы –это биологическая (все живое) и социальная (мышление и общественные отношения.


Каждая сложная форма движения включает в себя более простые формы. Движение на каждом уровне качественно характеризуется более высокой формой.. Каждая высшая форма обладает собственной качественной спецификой и несводима к низшим формам. При этом высшие формы неразрывно связаны низшими.

Двигательная деятельность человека включает в себя механические движения, которые представляют собой непосредственную цель двигательного действия. Но механическое движение осуществляется при участии более высоких форм движения. Биомеханика рассматривает тело человека как самоорганизующуюся систему.Механическое движение в живых системах проявляется как перемещение всей системы и как деформация самой биосистемы- перемещение одних ее частей относительно других.. Посвоей природе деформационные изменения выражаются преимущественно в форме межсуставных движений, распределенных и взаимосвязанных в пространстве и времени. Эти движения, как правило,сложны. поскольку двигательный аппарат человека представляет собой механическую систему.состоящую из более 200 костей, нескольких сотен сухожилий и более 600 мышц. Общее число возможных движений в суставах (степеней свободы) превосходит 250.

Работа мышц- это биологический процесс, при котором мышечные волокна должны быть активированы, чтобы они смогли выполнить механическую работу по перемещению звеньев тела. Чтобы совершить работу.необходимо затратить энергию, которая является результатом определенных биохимических реакций. С механической точки зрения человек представляет собой систему, обладающую внутренним источником энергии, биологическим по происхождению.

Чтобы мышцы сократились в необходимой последовательности и с определенными усилиями и в результате создали требуемый механический эффект движения, ими необходимо управлять, что делает головной мозг и нервная система.

Головной мозг выполняет высшие психические функции: мотивацию , осознание, Программирование , что оказывает непосредственное влияние на процесс формирования нервальных команд и их исполнение. Связь между психической,биологической и механической функцией многоуровневая.. В каждом движении присутствуют ориентировочная, исполнительна и контрольная части . Исполнительная часть-это и есть механическое движение. Но оно всегда определяется психической и физиологической деятельностью мозга. Обеспечивающей не только непосредственное управление движением, но также ориентировочную и контрольную части двигательного действия

по системе внутренней биологической обратной связи.

  1. Теория и метод биомеханики спорта

Теория биомеханики – это система основных положений, сформировавшихся на базе накопленных познаний. Методы биомеханики- это пути (способы0получения знаний.

А) Теория биомеханики спорта.

В современного понимания двигательных действий лежит системно-стуктурный подход (ССП), который рассматривает тело человека как движущуюся систему,а сами процессы- как развитие системы движений.. В рамках ССП стремятся к познанию состава и структуры двигательной деятельности, т. е. из каких элементов она состоит и как они связаны между собой, каковы внутренние механизмы взаимодействия.

Принципы,реализуемые в ССП. ,опираются на идеи теории систем Людвига фон Берталанфи.Целое представляет собой нечто большее, чем сумма его частей, составляющих его элементов, поскольку главная характеристика целого-взаимодействие,

протекающее между его различными элементами.

«Движение не есть цепочка деталей, а структура (т.е.система) .дифференцирующаяся на детали, структура целостная, при наличии в то же время высокой дифференциации элементов и разнообразно избранных форм взаимодействия между ними « (Н.А. Бернштейн)

Теория структурности движений опирается на следующие принципы:

а) Принцип структурности построения систем движения. Все движения в системе взаимосвязаны. Эти структурные связи определяют целостность и совершенство действия.

б)Принцип целостности действия –все движения образуют целостную систему, направлены на достижение цели. Изменение отдельного движения отражается на всей системе.

в) Принцип сознательной целенаправленности систем движения . Человек сознательно ставит цель, применяет целесообразные движения и управляет ими для достижения цели.

В основы теории биомеханики входят также предпосылки механической обусловленности и рефлекторной природы движений. Все движения осуществляются под действием механических сил различного происхождения в полном соответствии с законами механики. Для всех движений в целом характерна рефлекторная природа управления двигательными действиями на основе принципа невризма.

Б) Методы биомеханики спорта.

В своей основе они опираются на системный анализ и системный синтез действий

с использованием количественных характеристик движения, включая его моделирование.

Задачей системного анализа является выявление состава элементов движений. Биомеханика наука экспериментальная, опирающаяся на опытное изучение движений. При помощи приборов регистрируются количественные особенности движений (траектория, скорость, ускорение и т.п.) , позволяющие различать движения, сравнивать их между собой. Этот материал дает возможность,пользуясь определенными правилами,мысленно расчленить движение на составные части и установить состав системы.

Система движений как целое- это не пролсто сумма частей. Части системы объединены многочисленными связями, придающими ей новые,не свойственные частям качества-

системные (эмерджентные) свойства

Способ взаимосвязи частей в системе,закономерности их взаимодействия представляют ее структуру . Изучая изменения количественных характеристик выявляют кА элементы влияют друг на друга, определяют причины целостности системы. В этом состоит системный синтез действий.

Другим широко используемым методом исследования является функциональный метод. Этот подход позволяет выявить те или иные несовершенства техники и тактики, овладеть процессом управления без полного раскрытия природы явления. Суть его состоит в изучении функциональной зависимости между свойствами и состоянием явлений. Их характеризуют определенные параметры. условия и количественно определенный закон. При этом не ставится задача изучения внутренней структуры явления. Оба метода(ССП и функциональный) взаимно дополняют друг друга Применяя ССП исследователь строит анализ от сложного к простому. Элементы двигательной деятельности,находящиеся на нижней ступени иерархической лестницы, оказываются нераскрытыми, не детализированными и рассматриваются с позиций функционального подхода. Уровень,на котором ССП переходит в функциональный,зависит от решаемых задач.

Например, при тактической подготовке двигательные действия.технические элементы считаются неделимыми кирпичиками. При технической подготовке детально изучаются взаимодействия мышц, костей суставно- связочного аппарата. Но отдельных в отношении отдельных элементов двигательного аппарата применяется функциональный подход: их строение и функции на молекулярном уровне не рассматриваются.

  1. Спортивное упражнение как система движений и действий

Двигательное действие, посредством которого человек решает ту или иную двигательную задачу, почти всегда состоит из множества суставных движений, распределенных в пространстве и во времени. Чтобы анализировать двигательные действия нужно знать основные свойства систем движений.

При прочих равных условиях система движений тем сложнее, чем больше отдельных движений входит в ее состав и чем они разнообразнее. Система всегда обладает свойствами,которых нет у ее взятых порознь составных частей (эмерджентныесвойства)

Чем теснее связи между движениями как частями или элементами системы, тем больше ее свойства отличаются от простой совокупности свойств отдельных движений, тем она сложнее. Чем строже связи (уже диапазон их вариативности) между движениями как элементами системы, тем сложнее система в ее реализации.

Система движений обычно содержит относительно самостоятельные части (подсистемы), которые могут быть сходными или различными по характеру. Связи между отдельными движениями подсистемы теснее, чем связи между движениями из разных подсистем или связи между разными подсистемами.

В системе движений различают пространственные и временные элементы.

Пространственнее элементы системы - это суставные движения. Если они выполняются одновременно в нескольких суставах, то такие движения образуют одновременный или пространственный ряд. В одном суставе могут быть последовательно выполнены несколько движений- -это последовательный или временной ряд.

Различные комбинации одновременных и последовательных движений образуют пространственно- временные комплексы движений.

Структура системы движений-_ это совокупность основных закономерностей, определяющих взаимосвязи между элементами внутри подсистем. Упрощенно говоря, это схема способа взаимосвязи между составляющими ее частями и элементами.

Устойчивые изменения состава и структуры системы движений определяют ее развитие. Различают анатомическую, механическую и информационную структуры.

Механическая структура двигательного действия включает в себя кинематическую структуру: взаимосвязь положений,траекторий,темпов,ритмов,скоростей и ускорений звеньев тела и динамическую: взаимосвязь тяги мышц, силовые взаимодействия звеньев тела.

В общей двигательной задаче, решаемой при выполнении упражнения, различают более узкие, последовательно связанные задачи, каждая из которых представляет собой относительно самостоятельную часть общей- действия . Расчленяя любое упражнение на компоненты- действия., устанавливая принципы их взаимосвязей, можно определить общую функциональную структуру выполнения упражнений.

7.Биомеханический анализ.

Техническая спортсмена подготовка немыслима без анализа выполнения физического. упражнения.Эффективным средством в решении данной проблемы является биомеханический анализ, с помощью которого удается познать сущность систем движений выявить причины двигательных ошибок, отыскать пути избавления от них, повысить качество обучения выполнения упражнения.

Известно несколько разновидностей биомеханического анализа. Выбор конкретной формы определяется решаемой задачей.

Количественный анализ

а) точный- предполагает тщательную обработку и использование точных данных различных приборных измерений. Циклографии,фото- и киносъемки, с учетом возможно большего числа даже второстепенных фактов.

б) приближенный- используется упрощенная обработка данных относительно грубых измерений,.киносъемки с учетом наиболее весомых факторов.

Качественный анализ

а) улубленный- с тщательным исследованием материалов приборных измерений, циклографии, фото- и киносъемки и т.п. Задача такого анализа -осмысливание проведенного количественного анализа, его углубление и дополнение, получение педагогических выводов.

б)основной- то же, что и при углубленном анализе, но без ис пользования материалов приборных измерений и результатов количественного анализа.

В) упрощенный- с использованием грубых оценок при учете лишь решающих факторов. Применяется в простых, контрастных ситуациях, в условиях дефицита времени.

Педагогический анализ- с ограниченным использованием биомеханических знаний.

Основные этапы анализа двигательной деятельности в условиях количественного

биомеханического анализа.

1.Изучение внешней картины двигательной деятельности -из каких двигательных действий она состоит и в каком порядке они следуют друг за другом.. С этой целью регистрируют кинематические характеристики движения. Особо важно знать продолжительность отдельных частей движения (фаз), графическим отображением чего является хронограмма. Хронограмма двигательного действия характеризует технику, а хронограмма двигательной деятельности- это то, на что обращают внимание при анализе спортивной тактики.

2.Выяснение причин, вызывающих и изменяющих движение . Эти причины недоступны визуальному контролю и для их анализа необходимо регистрировать динамические характеристики .Важнейшее значение здесь имеют величины сил, действующих на человека извне и создаваемых собственными мышцами

3.Определение топографии работающих мышц. На этом этапе выявляется, какие мышцы как участвуют в выполнении данного упражнения. Для этого регистрируют электрическую активность работающих мышц(метод элетромиографии) .Чем активнее работает мышца, тем выше ее электрическая активность и больше амплитуда электромиограммы.

4. Определение энергетических затрат , а также того.насколько целесообразно расходуется энергия работающих мышц., для ответа на этот вопрос регистрируют энергетические характеристики Например, у стайеров высшей квалификации повышение экономичности бега на 20% перемещает их в списке лучших с 10-го на 1-е

5. Выявление оптимальных двигательных режимов, т.е. наилучшей техники двигательных действий и наилучшей тактики двигательной деятельности Здесь же оценивается степень соответствия реально существующего и оптимального вариантов техники и тактики. Критериями оптимальности являются:экономичность, механическая производительность, точность движений, эстетеичность, комфортабельность, безопасность. Значимость каждогоиз критериев зависит от решаемой задачи, вида спорта и др.

Использование результатов биомеханического анализа способствует объективизации суждений и повышению эффективности тренировки, увеличивает долю сознательного в

обучении. повышает точность умозаключений.

Биомеханический анализ в спорте чаще всего преследует педагогические цели и помогает решать следующие задачи:

1. Оптимальное использование двигательных возможностей спортсмена в рамках

дозволенной техники упражнений.

2 .Распознавание, определение и объяснение двигательных ошибок.

3 .Нахождение путей и средств ликвидации. предупреждения и компенсации двигательных ошибок.

4 Ревизия утвердившейся техники упражнений, действий с целью повышения их эффективности.


БИОМЕХАНИКА

Лекция № дополнительная

Биомеханический анализ ударных воздействий

Угрозы желœезнодорожному транспорту

1. сокращение бюджетного финансирования

2. неотлаженность управления ПАО (до 2015 г. ОАО) ʼʼРЖДʼʼ в свете реорганизации МПС РФ

3. несоблюдение правил технической эксплуатации пути и подвижного состава

4. необоснованные закрытия линий желœезнодорожного транспорта

5. децентрализация управления в связи с приватизацией объектов желœезнодорожного транспорта

6. нарастание износа базовых производственных фондов

7. устремленность Китая, стран СНГ азиатского региона в конкуренции с Транссибирской магистралью, на захват мировых грузопотоков

8. сохранение террористических атак в Южном федеральном округе

9. экономическая уязвимость Байкало-амурской и Транссибирской магистралей

10. трудности с транзитом через страны Балтии

11. плохое управление тарифами

12. конфликт интересов РЖД и РАО ЕС

13. моральная устарелость техники и технологии, недостаточность правового обеспечения перевозок на ж/д в свете транспортной безопасности

В повсœедневной жизни и при профессиональной деятельности человек подвергается действию разнообразных ускорений, испытывая его при ходьбе, в транспорте, при занятиях спортом, посœещении парков развлечений. Ряд профессий человека связан с регулярным воздействием ускорений (спортсмены, экипажи транспортных средств, пассажиры ТС). Ускорение, действующее на тело, вызывается силами, приложенными к телу. В простейшем случае движения при прямолинœейной траектории ускорение направлено по линии действия силы

При вращении тела относительно неподвижной оси с постоянной угловой скоростью, ускорение направлено по радиусу в сторону вращения и именуется центростремительным

При вращении под действием момента внешних сил с угловым ускорением и переменной скоростью вращения, одновременно с центростремительным ускорением возникает тангенциальное

Это ускорение направлено перпендикулярно радиусу по касательной к траектории, по вектор скорости.

В случае если наблюдается вращение с замедлением, то ускорение направлено против вектора скорости.

– перегрузка, где – ускорение, g – ускорение свободного падения

Перегрузка направлена по линии действия инœерционной силы, ᴛ.ᴇ. противоположно направлению ускорения. Тело человека представляет собой многозвенную систему, в состав которой входят твердые тела с различными модулями упругости (костно-опорный аппарат), мягкие ткани, жидкости, кровь, лимфа, газы. Реакция столь сложной системы на действие перегрузки зависит как от величины, так и от направления действия перегрузки относительно осœей тела человека. В задачах биомеханики принято раскладывать суммарный вектор перегрузки на компоненты по осям. Анализ действия производится как для компонентов, так и комбинированном их действии.

Подход по распределœению осœей продиктован структурой тела человека. При различного рода авариях и несчастных случаях человек может подвергаться действию нагрузок больших величин, которые могут представлять опасность для здоровья и жизни человека. При возникновении перегрузки возникают различные реакции

При анализе материалов на предмет воздействия на человека возникает два существенно разных вида реакций организма на воздействия перегрузки:

1. Расстройство кровообращения, дыхания и других жизненно важных функций при фактически полном сохранении механической целостности базовых органов и структур организма, перегрузки в этой группе – длительные (1-5 с)

2. Механические повреждения костно-опорного аппарата͵ разрушение тканей и органов в момент перегрузки (0.2 с, 0.3 с)

На основании анализа выделяют 3 типа критериев переносимости:

1. за максимально допустимое принимается воздействие перегрузки, неопасное для жизни человека, но при этом человек может получать травмы

2. за максимально допустимую принимается перегрузка, после воздействия которой физически подготовленный человек сохраняет работоспособность

3. за максимально допустимую принимается нагрузка, после которой человек без специальной физической подготовки сохраняет работоспособность и субъективно оценивает перегрузки как комфортные

Биомеханический анализ ударных воздействий - понятие и виды. Классификация и особенности категории "Биомеханический анализ ударных воздействий" 2017, 2018.

Правила, специфичные для КБА. В эту группу входят правила, присущие только КБА, несвойственные коли­чественному анализу.

1. Эффект рассматриваемых движений и действий оп­ределяется грубо, приближенно, следовательно, прибли­женный характер носят и оценки, выводы, решения (ко­нечные и промежуточные). Это связано прежде всего с отсутствием приборных измерений, с оценкой «на глаз». Но не только в этом причина. Иногда нельзя позволить себе учитывать много факторов, из соображений опера­тивности анализа приходится удовлетворяться только самыми существенными. Во многих случаях вполне устраивает приближенный характер оценок и решений, поскольку бывают нужны предельно простые и чисто качественные выводы (например, надо направить движе­ние правее, выполнить его с меньшим перепадом скоро­стей, такое-то усилие начать раньше, чем пройден такой-то ориентир, а не позже).

2. Выводы КБА почти всегда должны носить вероят­ностный характер. Это освобождает от пут единственного варианта, позволяет легче избежать плена возможных заблуждений и ошибок, сохранить способность искать другие решения, корректировать свои определения. Ко­нечно, предпочтение следует отдавать более вероятным вариантам-в меру отношений их вероятностей. Вероят­ностный характер решений и оценок-логическое следствие вынужденного игнорирования многих существен­ных и второстепенных факторов или неполного их учете!. Идти на это целесообразно в связи с тем, что, во-первых, невозможно учесть многие факторы одновременно (тем более гарантировать правильность их учета); во-вторых, с увеличением числа учитываемых факторов лавинооб­разно нарастает сложность и трудоемкость анализа,

3. Основная форма КБА - сравнительный анализ . Здесь чувствительность, точность и разрешающая спо­собность КБА много выше, чем в других его формах. Сравнивать можно выполнение одного и того же дейст­вия (упражнения) одним или разными спортсменами на основе одного и того же или разных вариантов техники; выполнение аналогичных частей (а то и деталей) раз­личных упражнений или действий; идеализированную схему действия с его реализованной техникой; различные модификации упражнений и т. д.

4. Должен быть четко выражен критический подход к отправным данным КБА, к оценкам и решениям . Этот подход должен проявляться прежде всего в устойчивой тенденции к проверке различных гипотез, решений, оце­нок. Нельзя делать (если только не вынуждают обстоя­тельства) категорических выводов на основании двух-трех наблюдений, тем более одного. Понимание вероят­ностного характера КБА косвенно способствует такого рода критическому настрою.

5. Сомнительные моменты анализа должны подвер­гаться экспериментальной проверке (если это не требует особых усилий и не отражается сколько-нибудь сущест­венно на тренировке): спортсмен должен попробовать ка­кое-то число раз выполнить рассматриваемое действие в точности так же, как выполнял, либо с задаваемыми из­менениями. Такого рода контрольные повторения дейст­вия (упражнения), конечно, не гарантируют правильно­го решения вопроса, но существенно повышают его веро­ятность. Следует пользоваться (как одним из наиболее информативных) методом задаваемых изменений выпол­нения действия (упражнения).



6. Замеченная двигательная ошибка не всегда зако­номерна . поэтому следует сначала постараться ее пода­вить и лишь при отрицательном результате приступать к анализу; однако это не догма: во многих случаях не бывает серьезных оснований для сомнений в сущности ошибки.

7. Два правила относятся к поиску ошибок-причин:

1) его нужно основывать на анализе распознанной дви­гательной ошибки (или нескольких, если распознано сразу несколько), при этом нередко приходится привлекать те или иные гипотезы; 2) анализируя причинную обус­ловленность ошибки, следует придерживаться неизмен­ного порядка, например: анализ внешних причин ошибки-анализ внутренних причин-непосредственный поиск ошибки-причины, или: анализ механических причин- анализ координационных причин - анализ психологиче­ских причин - анализ педагогических причин.

8. Анализируя реализованную технику упражнения (действия), нужно последовательно рассматривать: 1) из­бранный вариант техники упражнения и мотивы данного выбора; 2) особенности техники выполнения упражнения; 3) особенности предыдущих либо последующих упраж­нений (действий) и их выполнения; 4) одновременно вы­полняемые действия и их координационные связи с ана­лизируемым; 5) внешние условия; 6) двигательные осо­бенности спортсмена: физические, координационные, психические (имея в виду потенциальные возможности, багаж навыков, возможную их интерференцию; 7) со­стояние спортсмена: физиологическое (самочувствие, сте­пень утомления), психическое (психическое утомление, эмоциональное состояние, специфическое отношение к данному упражнению или действию), координационное (влияние предыдущих действий, наличие временных ко­ординационных неувязок, сбоев).

9. Если в циклической системе движений и действий один или несколько циклов почему-то отличаются от ос­тальных, надо искать сначала внешнюю причину изме­нений, затем ошибку в ближайших предыдущих циклах, затем особенности прогнозируемой спортсменом ситуа­ции (прогноз может быть и ошибочным из-за каких-то неясных, обманчивых признаков) и лишь в последнюю очередь-техническую ошибку (если она не квалифици­рована сразу же как бесспорно спонтанная).

10. Последовательность рассмотрения движений:

1) крупные, затем малые; 2) звенья биомеханической цепи самые дальние от участка наиболее мощного взаи­модействия, затем постепенно ближние звенья1 (с уче­том возникающих инерционных2 сил и моментов);

3) анализ работы звеньев биомеханической цепи в об­ратной последовательности: от участка наиболее мощного взаимодействия к дальним звеньям3; 4) основная рабочая биомеханическая цепь, затем остальные, косвен­но влияющие на нее (инерционные воздействия, коорди­национные взаимосвязи), конечно с учетом этого влия­ния, если оно существенно.

Универсальные правила. К этой группе относятся пра­вила, справедливые не только для К.БА, но и для всех других форм анализа.

1. Чтобы облегчить решение задач анализа, их можно делить на относительно самостоятельные части и решать каждую отдельно. Деля задачу на части, необходимо со­блюдать некоторые условия. Первое: нужно заменять связи, существующие между частями, конкретными воз­действиями, которые они оказывают друг на друга в кон­кретной ситуации. Это как бы расширение метода «отсе­чения связей», известного в теоретической механике. Второе: выделяемая часть задачи должна представлять собой самостоятельную и притом разрешимую задачу. Третье: деление на части не должно быть слишком дробным, так как замена связей воздействиями всегда связана с погрешностями и вероятностью ошибки. Чет­вертое: та или иная схема деления должна быть логиче­ски оправдана с точки зрения эффективности анализа и облегчения задачи.

2. Следует взять за правило «челночный» способ ре­шения задач , суть которого в том, что план решения со­ставляется по принципу «от конца к началу», а реализа­ция плана-«от начала к концу». В ряде случаев тре­буется неоднократный поочередный «проход в оба кон­ца» с целью поэтапной подгонки параметров движений.

3. Динамика системы движений может быть с извест­ным приближением определена по их кинематике и по статике мгновенных («проходных») поз.

Следует: исходя из геометрии мгновенных поз, рассматривае­мых в качестве контрольных, «прикидывать» моменты сил тя­жести звеньев тела относительно осей суставов, прини­мать в расчет примерные величины моментов инерции этих звеньев относительно названных осей, учитывать инерционность ускоряемых (в том числе и замедляемых) масс тела спортсмена и других тел, с которыми он взаимодействует; б) принимать в расчет величины линейных и угловых ускорений, изменения поз, значитель­ные деформации упругих тел; в) ориентироваться на скорости сус­тавных движений, а не движений относительно Земли. Во многих случаях, однако, целесообразно ориентироваться на скорость рабо­чей точки кинематической цепи относительно ее закрепленного кон­ца, в этом случае показательна и линейная скорость. Скорость движений представляет интерес при определении динамики движе­ний с двух позиций: она позволяет, во-первых, косвенно определить среднее ускорение, во-вторых, - силовые возможности спортсмена в данной двигательной ситуации; г) следует иметь в виду, что все ускорения звеньев тела в конечном счете обеспечиваются либо противополож­но направленными ускорениями других звеньев, либо опорными взаимодействиями. Это значит, что по ускорениям часто можно оп­ределить (качественно) характер, величину и направление опорных взаимодействий; д) при анализе кратковременных, близких к удар­ным, энергетически емких взаимодействий с опорой следует рассмат­ривать и учитывать предваряющие скорости и ускорения контакти­рующих с опорой звеньев тела не только относительно опоры, но и относительно проксимальнее расположенных звеньев: это позволяет определить усилия, предшествовавшие контакту и являющиеся под­готовительными к нему (в частности, заранее готовится встреча с опорой при значительном напряжении мышц, необходимая, например, для отталкивания в опорных гимнастических прыжках, в легкоатлетических и акробатических прыжках, в лыжных ходах; е) анали­зируя приземления, учитывать следует нецентральный характер силы реакции опоры, изменяющий в связи с этим кинетический мо­мент тела.

4. Анализируя систему движений, необходимо обра­щать внимание на перемещения звеньев тела во всех плос­костях, а не только в основной плоскости движений. Осо­бенно важно помнить это при анализе рисунков и кино­грамм.

5. «Мелкими» движениями обычно можно пренебречь , если анализу подвергается система движений, в которую входят движения с большим размахом либо движения больших масс тела, даже небольшие по размаху, но со значительными ускорениями.

Однако мелкие движения нередко могут играть очень сущест­венную роль в координационном, отношении и в таких случаях под­лежат тщательному анализу. Например, во всех точностных дейст­виях роль мелких движений очень велика: как правило, именно они обеспечивают сам точностный эффект, крупные же движения слу­жат лишь энергетическому обеспечению действия и создают разве что самый общий фон. Роль мелких движений, как правило, возрас­тает при сравнительном анализе, особенно если сравниваемые сис­темы движений мало различаются между собой. Наконец, если все движения невелики по размаху и энергетически незначительны, акцент следует делать на наиболее энергетически значимые.

6. Учет изменений суставных (или несколько более сложных) движений нередко не менее важен и информа­тивен, чем рассмотрение самих движений. Причем надо учитывать и скорость изменения движения.

7. В качестве ориентиров при анализе следует исполь­зовать граничные положения, позы. моменты взаимодей­ствия. Например, при анализе бега нужно ориентировать­ся на моменты постановки ноги, прохождения ц. т. тела опорной вертикали, завершения отталкивания (прекраще­ния контакта ноги с опорой), максимума подъема бедра. Такого рода «опорные точки» анализа дают возмож­ность проводить сравнения, формулировать и оценивать качественные различия вариантов реализованной техни­ки или техники упражнения.

«Управленческие» правила. К этой группе относятся правила, касающиеся отражения в анализе двигатель­ных действий закономерностей управления движениями и особенностей функционирования опорно-двигательного аппарата спортсмена.

1. Учитывать аспект надежности выполнения упраж­нения. Следует в первую очередь помнить об оптимиза­ции выполнения упражнения (включая оптимизациюего техники), а также о вероятностном характере выполне­ния движений и действий. Кроме того, нельзя забывать о возможности повысить надежность выполнения упраж­нения специальными приемами и мерами.

2. Учитывать физиологические закономерности работы нервно-мышечного аппарата : а) «инерционность» процес­сов напряжения и расслабления мышц, т. е. протяженность их во времени; б) зависимость величины предель­ной силы тяги мышц (а значит, силовых возможностей динамической цепи) при удерживающей работе от непо­средственно предшествовавшего режима движения;

в) зависимость предельной силы тяги мышц от скорости движения; г) зависимость степени инерционности про­цессов напряжения и расслабления мышц от скоростиихсокращения или удлинения (скорость сокращения отри­цательна); д) зависимость предельного напряжения мышцы от величины суставного угла; е) наличие латент­ного периода моторной реакции (особенно значительного при реакциях выбора) и др.

3. Учитывать закономерности координации движений и мышечных напряжений: а) зависимость предельного напряжения рассматриваемых мышц от напряжения дру­гих мышц; б) закономерности синергетических и антаго­нистических связей напряжения мышц; в) зависимость процесса напряжения или расслабления рассматривае­мых мышц от напряжения или расслабления других мышц.

4. Учитывать закономерности работы биомеханиче­ских цепей, определяющие: а) суммирование угловых перемещений, скоростей и ускорений рабочего и проксимальнее лежащих звеньев цепи; б) передачу моментов через суставы со звена на звено в направлении от свободного конца цепи к закрепленному; в) зависимость рабо­ты рук от работы пояса верхних конечностей; г) передачу нагрузки по цепи от рабочей точки к закрепленному кон­цу; д) различные силовые потенциалы звеньев динамиче­ской цепи и функциональное выравнивание их возможно­стей за счет различия скоростей суставных движений; е) наличие особо нагруженных и потому определяющих звеньев биодинамической цепи; нужно выявить их, «взвесив» нагрузки на различные участки опорно-двигательного аппарата, уточнить места локаль­ных перегрузок (угрожаемые), чтобы внести в систему движений коррекции, снимающие перегрузки.

5. Учитывать индивидуальные текущие двигательные особенности спортсмена, имея в виду индивидуальные по­тенциальные возможности и реальные текущие возмож­ности, отличающиеся от потенциальных из-за утомления, не очень хорошего самочувствия, недостаточного понима­ния ситуации, несобранности, травмы и т. д. Можно гово­рить об анатомо-физиологических, психолого-педагогических и координационно-педагогических двигательных ин­дивидуальных особенностях спортсмена.

6. Учитывать локализацию силовых и скоростных воз­можностей , свойственную человеку вообще и данному спортсмену в частности (индивидуальную локализацию).

7. Учитывать психологические факторы, влияющие на управление движениями: а) мотивацию и двигательную установку; б) «настройку» на данное упражнение; в) эмо­циональное состояние и настроение; г) способность к кон­тролю и саморегуляции, качество афферентной програм­мы, соответствующие умения и навыки; д) объем внима­ния, его устойчивость, способность к его распределению; е) степень психического утомления; ж) ход спортивной борьбы; з) психологические особенности внешней обста­новки; и) индивидуальную быстроту реакции; к) индиви­дуальные особенности реакции выбора; л) волевые каче­ства; м) функционирование анализаторов, н) темпера­мент спортсмена и др.

Правила применения механики (основные правила, касающиеся главным образом прямого обращения к за­конам механики).

1. Учитывать локализацию масс тела и в связи с этим величины моментов инерции тела и его частей относи­тельно оси вращения. Это необходимо как для определе­ния ускорений по известным силам и их моментам («пря­мая задача механики»), так и для определения сил и моментов сил по ускорениям («обратная задача меха­ники»),

2. Учитывать протяженность во времени изменения телом или его частями линейной либо угловой скорости, т. е. соответственно количества движения либо кинетиче­ского момента, под действием приложенных внешних сил Или моментов сил. Это проявление инерционности тела. Данное правило тесно связано с предыдущим, поскольку сила, масса, ускорение (в поступательном движении) и момент силы, момент инерции, угловое ускорение (во вращательном движении) связаны между собой функци­ональной зависимостью.

3. Учитывать инерционные воздействия (возникнове­ние так называемых реактивных сил и моментов): ре­зультат взаимодействия спортсмена с другим спортсме­ном или предметом, а также взаимодействия звеньев тела спортсмена. Здесь следует особо отметить два общих случая: а) когда тело находится в безопорном состоянии, активное движение одного Звена (группы звеньев) вле­чет за собой встречное перемещение других звеньев тела в соответствии с законами сохранения движения центра масс и сохранения кинетического момента; б) при си­ловом взаимодействии тела спортсмена с опорой активные ускоряемые движения звеньев тела, направленные в сто­рону действия реакции опоры, усиливают воздействия, направленные противоположно, - ослабляют его; направ­ленные под прямым углом к линии действия реакции опоры обычно практически не влияют на величину воз­действия. При КБА, как правило, интерес представляют только движения крупных звеньев тела со значительны­ми ускорениями.

4. Учитывать действие на тело и его звенья силы тя­жести и ее моментов относительно осей суставов. Только при безопорном состоянии тела моменты силы тяжести ни на него, ни на его звенья не действуют.

Заданные условия деятельности. Отдельную группу составляют правила, связанные с регламентацией в спор­те определенных условий, которые необходимо соблю­дать и которые являются исходными для решаемой дви­гательной задачи.

1. Учитывать особенности выполняемого двигательно­го действия : каждое имеет свои особенности с точки зре­ния биомеханики, физиологии, психологии, спортивной педагогики.

2. Учитывать регламентацию деятельности во време­ни . Например: гимнаст должен придерживаться задан­ной последовательности элементов комбинации; штан­гист, взяв штангу на грудь, должен иметь в виду, что за­тем придется толкать ее от груди; теннисист после выполнения удара должен переместиться в то место пло­щадки, куда противник направит мяч, затем снова вы­полнить удар и т. д.

3. Учитывать регламентацию деятельности в простран­стве. Правила соревнований, конструкция инвентаря, особенности места выполнения действия ограничивают перемещения спортсмена в пространстве. Например: тех­ника движений метателя во многом определяется запре­том выхода за пределы круга; перемещения гимнаста в пространстве в большой степени ограничены конструкци­ей снаряда; деятельность борца или боксера пространст­венно ограничена ковром (рингом), а также расположе­нием и деятельностью противника. Пространственными ограничениями объясняются многие черты техники уп­ражнений и реализованной техники упражнений.

4. Учитывать тактическую регламентацию деятельно­сти. Имеются в виду сознательные отклонения избранно­го варианта техники от наиболее рационального в пред­видении трудностей, связанных а) с особенностями дви­гательной задачи; б) с особенностями противника или партнера; в) со стремлением дезориентировать против­ника: скрыть от него информацию о своей деятельности, дать ему ложную информацию (для этого применяют также дополнительные, не оправданные стоящей чисто технической двигательной задачей действия).

5. Учитывать ситуационные особенности внешних ус­ловий двигательной деятельности: обычно эти условия в чем-то отличаются от стандартных, что может существенно сказаться на выполнении упражнений и действий.

Расшифровка изображений выполнения упражнений. Использование кинограмм, рисунков, схем движений и т. п. в процессе КБА сопряжено с определенными труд­ностями, преодолению которых могут помочь следующие правила.

1. «Домысливать» движение на основе совокупности изображенных поз (и даже одного-единственного изобра­жения). В противном случае трудно избежать частичной подмены анализа движений анализом статических упраж­нений.

2. Ориентацию тела определять по отношению к вер­тикали, фиксированной на кинограмме . Отсчет от гори­зонтали может привести к значительным ошибкам, если съемка производилась с поворотом кинокамеры в гори­зонтальной плоскости с целью удержать перемещающе­гося спортсмена в кадре.

3. Прослеживать на последовательных кадрах кино­граммы прежде всего изменение суставных углов в основ­ной рабочей цепи, а не положения звеньев тела: именно изменения суставных углов определяют (в совокупности с действием внешних сил) динамику двигательного дей­ствия.

4. Ориентироваться на внешний вид мышц: по нему часто можно в первом приближении определить, какие мышцы, в какой момент и в какой степени напряжены, а какие расслаблены.

5. Анализировать деформацию упругих внешних тел, с которыми взаимодействует спортсмен, определяя таким образом силу этого взаимодействия и ее изменение во времени.

Получение исходных данных анализа. Качество и пол­нота исходных данных в значительной мере определяют результативность анализа. Представляется целесообраз­ным перечислить здесь несколько общих правил сбора этих данных (само собой разумеется, выбирать их надо с учетом специфики средств и приемов анализа, которые намечено применить).

1. Иметь хотя бы самый общий план наблюдения или самонаблюдения. Если не знаешь, за чем и как наблю­дать, вряд ли многое удастся заметить, тем более оценить замеченное и (хотя бы в какой-то мере) качествен­но его осмыслить.

2. Ведя наблюдение или самонаблюдение, иметь гипо­тезу, объясняющую причинно-следственные зависимос­ти ожидаемых особенностей выполнения изучаемого дей­ствия (в том числе причинные цепи ошибок). Правда, при этом могут появиться известная предвзятость вы­водов и связанные с ней ошибки в наблюдениях, но зато часто гораздо больше можно увидеть (почувствовать) и понять.

3. Предугадывать вероятные особенности выполнения действия (в том числе ошибки и их масштаб). В случае удачного прогноза наблюдение или самонаблюдение значительно тоньше, глубже и полнее.

4. Наблюдая, акцентировать внимание на «ключевых» деталях и соотношениях. То же при самонаблюдении.

5. Сравнивать реализованную технику упражнения разных спортсменов либо одного и того же спортсмена в разных попытках, обращая внимание на диапазон, на­правление и скорость суставных движений, их ритмиче­скую структуру, исходные, конечные и характерные промежуточные позы и позные фрагменты, диапазон, направ­ление и скорость поступательных и вращательных движе­ний всего тела.

6. Анализировать реализованную технику упражнения с учетом действий противника (партнера).

7. Данные самонаблюдений пополнять данными наб­людений со стороны.

8. Учитывать субъективный характер самонаблюде­ния : получаемая информация относится больше к техни­ке выполнения упражнения, чем к реализованной тех­нике.

9. Следить за положением головы и направлением взгляда: во многих упражнениях и действиях это помо­гает определить цель и направление усилий спортсмена (нередко до начала самого действия), так что наблюда­ющий может предвидеть их и потому лучше разглядеть, а в ряде случаев и выявить распределение их в опорно-двигательном аппарате. «Нестандартное» для данного упражнения или действия положение головы часто слу­жит признаком (прямым или косвенным) двигательной ошибки и тем самым помогает определить ее.

10. Дополнять метод наблюдения методом опроса. Это обогащает информацию: она не просто суммирует­ся; нередко появляется новая, так называемая эмерджентная информация - результат усложнения и расши­рения информационной системы.

11. Опросом спортсмена стимулировать его к само­наблюдению, тем самым повышая количество и качество информации.

12. Расширять объем информации и объективизиро­вать ее с помощью опроса других наблюдателей .

13. Выбирать такой ракурс для наблюдения, чтобы яснее всего были видны основные компоненты двигатель­ного действия или интересующей его части. Вместе с тем по возможности рассматривать выполнение движений в разных ракурсах, т. е. с разных точек, поскольку это мо­жет дать новые исходные данные для анализа, подчас неожиданные.

Правила анализа SOS-действий. Думается, что ана­лизу самостраховки (а точнее, «самоспасательных» дей­ствий, или SOS-действий ) в подавляющем большинстве видов спорта придается явно недостаточное значение. Почему-то анализ этих действий считается не заслужи­вающим внимания, хотя все прекрасно понимают их важ­ность для сохранения жизни и здоровья спортсменов. Да и спортивные успехи немало зависят от умения пре­дотвратить травмы.

1. Определять особо нагруженные звенья динамиче­ских цепей (учитывая их прочностные характеристики) с целью выявления локализации потенциальной опасно­сти. Особое внимание обращать на временно ослаблен­ные звенья.

2. Определить для себя (приблизительно) зоны око­лопредельных силовых возможностей звеньев динамичес­ких цепей в различных типовых ситуациях.

3. Определить для себя (приблизительно) зоны околопредельных локальных скоростных возможностей (воз­можностей выполнять те или иные движения с той или иной скоростью), за пределами которых начинается SOS-ситуация.

4. Определить для себя зоны. локальных координаци­онных возможностей, мобилизация которых необходима в SOS-ситуациях.

5. Определять (или обеспечивать короткий прогноз) наступление SOS-ситуаций по факту вхождения в одну из перечисленных зон, даже если в остальном действия развиваются нормально.

6. Стараться быстро и четко определить общий харак­тер и особенности наступившей или прогнозируемой си­туации такого рода.

7. Иметь заранее заготовленные схемы SOS-действий, адекватных типовым и в достаточной мере вероятным SOS-ситуациями.

8. Контролировать адекватность реализуемых SOS-действий текущей ситуации в каждый момент , имея в ви­ду готовность к срочному внесению (по мере необходи­мости) коррекций в систему движений. Учитывать при этом первоочередность задачи защиты более уязвимых участков тела.

Наблюдая движения человека, можно заметить, что многие их особенности все время изменяются. Изменяется положение звеньев тела, скорости движения и многое другое. Особенности (или признаки) движения позволяют разделить сложное движение на составные части, заметить, как они влияют одна на другую, как помогают достичь цели. Для этого и изучают характеристики движений человека. Характеристики движений человека - это те особенности, или признаки, по которым движения различаются между собой.

Различают качественные и количественные характеристики.

Качественные характеристики - характеристики, описываемые только словами и не имеющие точной количественной меры (например: напряженно, свободно, плавно, мягко и др.).

Количественные характеристики - характеристики, которые измеряют или вычисляют, они имеют количественную меру.

Педагогу при проведении урока нечем и некогда измерять и регистрировать количественные характеристики. Ему приходится пользоваться качественными характеристиками, он проводит качественный биомеханический анализ движений каждого ученика.

Изучая движения с помощью измерительной и записывающей аппаратуры, получают количественные характеристики. Их обрабатывают, проводят вычисления для количественного биомеханического анализа. Конечно, затем должен следовать и качественный анализ, чтобы понять законы движения и использовать их в физическом воспитании. Хорошо владея навыками количественного анализа, в повседневной практической работе можно с успехом пользоваться только качественным анализом.

Движение выражается в изменении с течением времени взаимного положения тел. Его можно наблюдать и отсчитывать только относительно других реальных тел (например, при прыжках в длину - относительно бруска) или условных (например, в старте яхт - относительно линии створа).

В зависимости от условий задачи, стоящей при изучении двигательного действия, выбирается та или иная система отсчета. Принято выделять:

- инерциальную систему отсчета (Земля, дорожка, лыжня) - движения их в данной системе незаметны при измерениях, т.е. изменениями скорости, ускорениями при решении данной задачи можно пренебречь;

- неинерциальная система отсчета - движущееся тело (скользящая лыжа, раскачивающиеся кольца), движение которого происходит с заметным ускорением, существенно влияющим на отсчет расстояния;

- соматическая система отсчета (тело человека) - движение звеньев рассматривается относительно туловища.

Классификация методов исследования . В развитии методов исследования биомеханики нашли отражение ее синтетический характер, тесные связи со многими смежными науками (анатомия, физиология, теоретическая механика, кибернетика и т. д.). Еще на заре научной медицины в работах Аристотеля и Галена появились первые описания картины движения животных и человека. Но лишь в последние десятилетия, в значительной мере благодаря успехам биомеханики, физиологии, рентгеноанатомии, клинической медицины, электроники, появились возможности объективной регистрации разнообразных проявлений двигательной активности человека.

В настоящее время биомеханика обладает значительным арсеналом методов исследования локомоторной функции, как в статике, так и в динамике, причем изучается не только внешняя картина движения, но и механизмы управления, жизнеобеспечение организма, что дает возможность выявить целый комплекс параметров, характеризующих двигательный образ. В это понятие включаются не только внешние (механические) проявления движения и реакций окружающей среды, но и условия организации управления движениями, согласованная деятельность всех органов и систем организма.

Получаемая в результате биомеханических исследований информация служит основой для определения нормы, позволяет количественно определить степень нарушения локомоторной функции при различных патологических состояниях. Биомеханические исследования достаточно широко используются не только в клинической медицине (функциональная диагностика, ортопедия, травматология, протезирование), но и в спорте, и при разработке различных антропоморфных механизмов (роботы, манипуляторы), и при решении других прикладных задач. Методическая база биомеханических исследований постоянно совершенствуется, используя новейшие достижения науки.

Методы исследования, получившие наибольшее распространение в настоящее время, в клинической биомеханике могут быть классифицированы следующим образом:

I. Соматометрические: антропометрия, фотограмметрия, рентгенография.

II. Кинезиологические: оптические, потенциометрия, электроподография, тензометрия, ихнография.

III. Клинико-физиологические: косвенная калориметрия, электромиография, электроэнце-фалография, другие методы функциональной диагностики.

Введение


Процедура анализа двигательной деятельности (биомеханического анализа) состоит из следующих этапов:

Изучение внешней картины двигательной деятельности. Прежде всего, выясняют, из каких двигательных действий она состоит, и в каком порядке действия следуют друг за другом.

Изучая внешнюю картину двигательной деятельности, регистрируют кинематические характеристики. Особенно важно знать продолжительность отдельных частей движения (фаз), графическим отображением чего является хронограмма. Хронограмма двигательного действия характеризует технику, а хронограмма двигательной деятельности - первое, на что обращают внимание при анализе спортивной тактики.

Выяснение причин, вызывающих и изменяющих движения. Они не доступны визуальному контролю, и для их анализа необходимо регистрировать динамические характеристики. Важнейшее значение здесь имеют величины сил, действующих на человека извне и создаваемых его собственными мышцами.

Определение топографии работающих мышц. На этом этапе выявляется, какие мышцы и как участвуют в выполнении данного упражнения. Зная, какие мышцы преимущественно обеспечивают двигательную деятельность, к которой готовит себя человек, можно из множества физических упражнений отобрать способствующие развитию именно этих мышц и их координации.

Определение энергетических затрат и того, сколь целесообразно расходуется энергия работающих мышц. Для ответа на эти вопросы регистрируют энергетические характеристики.

Выявление оптимальных двигательных режимов (наилучшей техники двигательных действий и наилучшей тактики двигательной деятельности) осуществляется на заключительном этапе биомеханического анализа. Здесь же оценивается степень соответствия реально имеющих место и оптимальных вариантов техники и тактики.


1. Биомеханический анализ прыжка в высоту в аэробике


Прыжок в высоту в спортивной аэробике выполняется из исходного положения ноги вместе (пятки вместе, носки слегка врозь - на ширину стопы). Движение состоит из двух основных частей. Первая - отталкиваясь двумя ногами, выпрыгнуть невысоко вверх и затем принять положение полуприседа ноги врозь (стопы слегка повернуты наружу или параллельны), при приземлении нужно опуститься на всю стопу. Расстояние между стопами равно ширине плеч, тяжесть тела равномерно распределена на обе ноги, направление коленей и стоп должно совпадать. При этом движении проекция колен не должна выходить за пределы опоры стопами, угол в коленных суставах должен быть больше 90°. Вторая часть движения - небольшим подскоком соединить ноги и возвратиться в исходное положение. При выполнении этого движения не допускаются перемещения туловища (наклоны, повороты).

Перемещением тела в пространстве спортсмен управляет посредством суставных движений, ограничивая подвижность в одних суставах и активизируя в других. Характер управляющих движений во взаимосвязи с внешними воздействующими факторами (количество движения; реакции опоры; момент сил трения, тяжести и т.д.) обуславливает все многообразие двигательных действий человека.

Данное движение состоит из ряда взаимосвязанных частей, причем каждая предыдущая готовит условия для эффективного выполнения последующей. Другими словами, все они связаны определенными целевыми установками.

Отталкивание в прыжке в высоту в аэробике совершается за счет выпрямления ног, маховых движений рук и туловища. Задача отталкивания - обеспечить максимальную величину вектора начальной скорости ОЦМ и оптимальное ее направление. После отталкивания, в полете, тело спортсмена всегда совершает движения вокруг осей. Поэтому в задачи отталкивания входит также и начало управления этими движениями.

Начало управления этими движениями начинается с амортизации - подседании на толчковой ноге. Мышцы-антагонисты растягиваются и напрягаются, углы в суставах становятся близкими к рациональным для начала отталкивания. ОЦМ тела приходит в исходное положение для начала ускорения отталкивания (удлинение пути ускорения ОЦМ).

Пока происходит амортизация (сгибание ноги в коленном суставе) и место опоры находится еще впереди ОЦМ, спортсмен, активно разгибая ноги в тазобедренном суставе, уже активно помогает продвижению тела вверх.

В течение амортизации горизонтальная скорость ОЦМ снижается, во время отталкивания создается вертикальная скорость ОЦМ. К моменту отрыва ног от опоры обеспечивается необходимый угол вылета ОЦМ.

Для достижения максимально высокого взлета спортсмену необходимо на пути вертикального перемещения ОЦМ тела при отталкивании проявить наибольшую мощность.

В полете траектория ОЦМ предопределена величиной и направлением вектора начальной скорости ОЦМ. Движения представляют собой движения звеньев вокруг осей, проходящих через ОЦМ.

Полетная фаза может служить зеркалом, в котором отражаются все особенности механизма отталкивания. В качестве элементов динамической осанки здесь следует выделить удержание максимально разогнутого положения в тазобедренных суставах при прямом положении головы и позвоночника.

Спортсмен приземляется на обе ноги. Основная задача при приземлении - смягчить удар. В процессе торможения происходит сгибание в тазобедренных и коленных суставах. Характер работы мышечных групп - уступающий.


. Биомеханический анализ шага на месте


Шаг вперёд в аэробике представляет собой хорошо автоматизированную и цикличную локомоцию. Изучение анализа данного движения удобно тем, что в ее осуществлении участвует весь опорно-двигательный аппарат. Это дает возможность исследовать функцию любых его отделов, включая верхние конечности и позвоночник.

Постановка правой ноги на опору;

Когда говорят о фазовом составе двигательного действия, имеют в виду движения всего тела (в данном случае обеих ног). Но для понимания механизмов ходьбы нужно знать, какие элементарные действия выполняются каждой ногой. В периоде переноса нога сначала сгибается, а затем разгибается в коленном суставе. Из элементарных действий формируются фазы.

Человек является самодвижущейся системой, поскольку первопричиной его движений служат внутренние силы, создаваемые мышцами и приложенные к подвижным звеньям тела. К внутренним относятся и силы инерции, приложенные к центрам масс разгоняемых и тормозимых звеньев тела («фиктивные» силы инерции) или к другим звеньям тела либо к внешним предметам («реальные» силы инерции).

Сила инерции (Fин) равна произведению массы всего тела или отдельного звена на его ускорение и направлена в сторону, противоположную ускорению. Поэтому сила инерции замедляет и разгон, и торможение.

Наряду с внутренними на человека действуют внешние силы. При данном движении к ним относятся: сила тяжести, сила реакции опоры.

Сила тяжести (гравитационная сила) приложена к центру масс и равна произведению массы тела на ускорение земного тяготения:

Силу реакции опоры измеряют и изображают графически, для того чтобы определить результат совместного действия всех сил (и внутренних, и внешних). Как же формируется опорная реакция?

Отталкиваясь от опоры, человек воздействует на нее с силой отталкивания, которая состоит из двух компонентов: статического - веса (постоянного и равного силе тяжести) и динамического компонента.

В данном движении полезной работой является только горизонтальная внешняя работа. Вертикальные и поперечные перемещения тела относятся к непроизводительным движениям.

3. Биомеханический анализ маха вперёд


Выполняется в положении стоя на одной ноге. Маховая прямая нога поднимается точно вперед, разрешено небольшое «выворотное» положение стопы. Амплитуда маха определяется уровнем подготовленности занимающегося, не допускается «хлестообразное» движение и не контролируемое опускание ноги после маха (падение). Минимальной амплитудой в спортивной аэробике можно считать мах выше уровня горизонтали. Для оздоровительного направления аэробики рекомендована амплитуда маха не выше 90°. Разрешается любой вариант маха (на месте, на шагах, беге, прыжках). Возможна также разная плоскость движения (мах вперед или вперед - в сторону). Если мах сочетается с подскоком, то при приземлении следует обязательно опускаться на всю стопу, избегать баллистических приземлений и потери равновесия.

Мах вперёд - это быстрое движение свободных звеньев тела, одинаковые в основном по направлению с отталкиванием ногой от опоры. При махе вперёд перемещаются ЦМ соответствующих звеньев тела. Значит одновременно происходит перемещение ОЦМ всего тела.

Толчок правой ногой начинает мах вперед за счет перемещения право-го бедра вперед. Данное действие в дальнейшем дополняется вращением бедер в левую сторону. Данное движение бедер срабатывает в качестве спускового механизма для начала процесса разворота верхней части тела спортсмена (вращения туловища).

Øтолчок правой ногой;

Øвращение бедер;

Øвращение туловища (инициация вращения верхней части тела)

При покидании опоры толчковая нога становится маховой с высоким уровнем потенциальной энергии. По инерции маховая нога сгибается в коленном суставе, тем самым увеличивается натяжение в четырехглавой мышце, и укорачивается амплитуда движения на длину голени, что существенно ускоряет мах.

В организации маха большую роль играет работа рук. В конце отталкивания правой ногой правая рука активно машет вперед по ходу движения, а левая назад. Таким образом, правое плечо поворачивается в сторону движения и через косые мышцы живота поворачивает правую сторону таза так же в сторону движения, тем самым дополнительно увеличивается натяжение сгибателей туловища и 4-х главой мышцы.

Мах в значительной степени осуществляется за счет превращения потенциальной энергии в кинетическую. Во время маха происходит натяжение мышц антагонистов (разгибателей туловища и мышц задней поверхности соответствующей ноги).

Натяжение мышц задней поверхности останавливает мах и выхлест голени. Маховая нога, слегка согнутая в коленном суставе, упруго ставится на опору несколько впереди центра с наружной части стопы загребающим движением, и начинается фаза амортизации за счет некоторого подседания, то есть сгибания в тазобедренном и коленном суставе и тыльном сгибании в голеностопном суставе. Все это дает возможность растянуть соответственные мышцы и подготовить их тем самым к активной работе при отталкивании, то есть вновь происходит накопление потенциальной энергии в растянутых мышцах, которая, превращаясь в кинетическую, произведет отталкивание.


Заключение

биомеханический аэробика упражнение

Таким образом, прыжок в высоту в аэробике выполняется из исходного положения ноги вместе (пятки вместе, носки слегка врозь - на ширину стопы). Движение состоит из двух основных частей. Первая - отталкиваясь двумя ногами, выпрыгнуть невысоко вверх и затем принять положение полуприседа ноги врозь (стопы слегка повернуты наружу или параллельны), при приземлении нужно опуститься на всю стопу. Расстояние между стопами равно ширине плеч, тяжесть тела равномерно распределена на обе ноги, направление коленей и стоп должно совпадать. При этом движении проекция колен не должна выходить за пределы опоры стопами, угол в коленных суставах должен быть больше 90°. Вторая часть движения - небольшим подскоком соединить ноги и возвратиться в исходное положение. При выполнении этого движения не допускаются перемещения туловища (наклоны, повороты).

Отталкивание в прыжке в высоту в аэробике совершается за счет выпрямления ног, маховых движений рук и туловища. Начало управления этими движениями начинается с амортизации - подседании на толчковой ноге. Пока происходит амортизация (сгибание ноги в коленном суставе) и место опоры находится еще впереди ОЦМ, спортсмен, активно разгибая ноги в тазобедренном суставе, уже активно помогает продвижению тела вверх.

Выпрямление ног и маховые движения, создавая ускорения звеньев тела вверх, вызывают их силы инерции, направленные вниз.

В прыжке в высоту усилия направлены на обеспечение наибольшей вертикальной скорости.

Шаг на месте в аэробике напоминает естественную ходьбу, но отличается большей четкостью. Стоя на прямой ноге (туловище вертикально), другую сгибая поднять точно вперед (колено ниже горизонтального положения), без сопутствующего движению поворота таза. Стопа поднимаемой ноги находится на уровне верхней трети голени, носок оттянут (т.е. голеностопный сустав согнут).

Каждый полуцикл данного движения состоит из пяти фаз (римские цифры). Фазы отделены друг от друга пятью граничными позами (арабские цифры).

Отрыв стопы правой ноги от опоры;- подседание на левой (опорной) ноге, ее сгибание в коленном суставе;

Начало разгибания левой ноги;- выпрямление левой ноги, ее разгибание в коленном суставе;

Момент, когда правая нога в процессе переноса начала опережать левую;- вынос правой ноги с опорой на всю стопу левой ноги;

Отрыв пятки левой ноги от опоры;- вынос правой ноги с опорой на носок левой ноги;

Постановка правой ноги на опору;- двойная опора, переход опоры с левой ноги на правую.

Мах вперёд выполняется в положении стоя на одной ноге. Амплитуда маха определяется уровнем подготовленности занимающегося, не допускается «хлестообразное» движение и не контролируемое опускание ноги после маха (падение). Минимальной амплитудой в спортивной аэробике можно считать мах выше уровня горизонтали. Для оздоровительного направления аэробики рекомендована амплитуда маха не выше 90°.

Последовательность движений при махе вперёд может быть представлена следующим образом:

Øтолчок правой ногой;

Øвращение бедер;

Øвращение туловища (инициация вращения верхней части тела);

Весьма важно, что все эти движения должны быть скоординированы.


Список литературы


1.Донской Д.Д., Зациорский В.М. Биомеханика: Учебник для институтов физической культуры. - М.: «ФиС», 1979.

2.Дубровский В.И., Федорова В.Н. Биомеханика: Учебник для вузов: М.: «ВЛАДОС-ПРЕСС», 2003.

.Зациорский В.М. Аруин А.С., Селуянов В.Н. Биомеханика двигательного аппарата человека. - М.: «ФиС», 1982.

.Практикум по биомеханике: Учебное пособие для институтов физической культуры // Под ред. И.М. Козлова. - М.: «ФиС», 1980.

.Зациорский В.М., Алешинский С.Ю., Якунин Н.А. Биомеханические основы выносливости. - М.: «ФиС», 1982.

.Коренберг В.Б. Спортивная биомеханика - Малаховка, 1999.

.Уткин В.Л. Биомеханика физических упражнений. - М.: «Просвещение», 1989.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



 

Возможно, будет полезно почитать: