Функции скелетных и гладких мышц. Строение скелетной мышцы как органа

Основным элементом скелетной мышцы является мышечная клетка. В связи с тем, что мышечная клетка по отношению к своему поперечному сечению (0,05-0,11мм) относительно длинна (волокна бицепса, например, имеют длину до 15 см), ее называют также мышечным волокном.

Скелетная мышца состоит из большого количества этих структурных элементов, составляющих 85-90% от ее общей массы. Так, например, в состав бицепса входит более одного миллиона волокон.

Между мышечными волокнами расположена тонкая сеть мелких кровеносных сосудов (капилляров) и нервов (приблизительно 10% от общей массы мышцы). От 10 до 50 мышечных волокон соединяются в пучок. Пучки мышечных волокон и образуют скелетную мышцу. Мышечные волокна, пучки мышечных волокон и мышцы окутаны соединительной тканью.

Мышечные волокна на своих концах переходят в сухожилия. Через сухожилия, прикрепленные к костям, мышечная сила воздействует на кости скелета. Сухожилия и другие эластичные элементы мышцы обладают, кроме того, и упругими свойствами. При высокой и резкой внутренней нагрузке (сила мышечной тяги) или при сильном и внезапном внешнем силовом воздействии эластичные элементы мышцы растягиваются и тем самым смягчают силовые воздействия, распределяя их в течение более продолжительного промежутка времени.

Поэтому после хорошей разминки в мускулатуре редко происходят разрывы мышечных волокон и отрывы от костей. Сухожилия обладают значительно большим пределом прочности на растяжение (около 7000 Н/кв см), чем мышечная ткань (около 60 Н/кв см), где Н – ньютон, поэтому они гораздо тоньше, чем брюшко мышцы. В мышечном волокне содержится основное вещество, называемое саркоплазмой. В саркоплазме находятся митохондрии (30-35% от массы волокна), в которых протекают процессы обмена веществ и накапливаются вещества, богатые энергией, например фосфаты, гликоген и жиры. В саркоплазму погружены тонкие мышечные нити (миофибриллы), лежащие параллельно длинной оси мышечного волокна.

Миофибриллы составляют в совокупности приблизительно 50% массы волокна, их длина равна длине мышечных волокон, и они являются, собственно говоря, сократительными элементами мышцы. Они состоят из небольших, последовательно включаемых элементарных блоков, именуемых саркомерами (рис. 33).

Рис. 33. Схема скелетной мышцы: мышца (до 5 см), пучок мышечных волокон (0,5 мм), мышечное волокно (0,05-0,1 мм), миофибрилла (0,001-0,003 мм). Цифры в скобках обозначают приблизительный размер поперечного сечения строительных элементов мышцы

Так как длина саркомера в состоянии покоя равна приблизительно лишь 0,0002 мм, то для того, чтобы, к примеру, образовать цепочки из звеньев миофибрилл бицепса длиной 10-15 см, необходимо "соединить" огромное количество саркомеров. Толщина мышечных волокон зависит главным образом от количества и поперечного сечения миофибрилл.

В миофибриллах скелетных мышц наблюдается правильное чередование более светлых и более темных участков. Поэтому часто скелетные мышцы называют поперечнополосатыми. Миофибрилла состоит из одинаковых повторяющихся элементов, так называемых саркомеров. Саркомер ограничен с двух сторон Z-дисками. К этим дискам с обеих сторон прикрепляются тонкие актиновые нити. Нити актина обладают низкой плотностью и поэтому под микроскопом кажутся более прозрачными или более светлыми. Эти прозрачные, светлые области, располагающиеся с обеих сторон от Z-диска, получили название изотропных зон (или I-зон).
В середине саркомера располагается система толстых нитей, построенных преимущественно из другого сократительного белка, миозина. Эта часть саркомера обладает большей плотностью и образует более темную анизотропную зону (или А-зону). В ходе сокращения миозин становится способным взаимодействовать с актином и начинает тянуть нити актина к центру саркомера. Вследствие такого движения уменьшается длина каждого саркомера и всей мышцы в целом. Важно отметить, что при такой системе генерации движения, получившей название системы скользящих нитей, не изменяется длина нитей (ни нитей актина, ни нитей миозина). Укорочение является следствием лишь перемещения нитей друг относительно друга. Сигналом для начала мышечного сокращения является повышение концентрации Са 2+ внутри клетки. Концентрация кальция в клетке регулируется с помощью специальных кальциевых насосов, встроенных в наружную мембрану и мембраны саркоплазматического ретикулума, который оплетает миофибриллы.

Двигательная единица (ДЕ) – группа мышечных волокон, иннервируемых одним мотонейроном. Мышца и ее нервный привод состоят из большого количества параллельно расположенных ДЕ (рис. 34).

Рис. 34. Строение двигательной единицы: 1 – спинной мозг; 2 – мотонейроны; 3 – аксоны; 4 – мышечные волокна

В нормальных условиях ДЕ работает как единое целое: посылаемые мотонейроном импульсы приводят в действие все входящие в ее состав мышечные волокна. Благодаря тому, что мышца состоит из множества ДЕ (в крупных мышцах до несколько сотен), она может работать не всей массой, а по частям. Это свойство используется при регуляции силы и скорости мышечного сокращения. В естественных условиях частота импульсов, посылаемых мотонейронами в ДЕ, находится в пределах 5–35 имп./с, лишь при максимальных мышечных усилиях удается зарегистрировать частоту разрядов выше 50 имп./с.

Компоненты ДЕ обладают различной лабильностью: аксон – до 1000 имп./с, мышечное волокно – 250-500, мионевральный синапс – 100–150, тело мотонейрона – до 50 имп./с. Утомляемость компонента тем выше, чем меньше его лабильность.

Различают быстрые и медленные ДЕ. Быстрые обладают большой силой и скоростью сок-ращения в короткое время, высокой активностью гликолитических процессов, медленные рабо-тают в условиях высокой активности окислительных процессов длительно, при меньшей силе и скорости сокращения. Первые быстро утомляемы, содержат много гликогена, вторые выносливы – в них много митохондрий. Медленные ДЕ активны при любом напряжении мышцы, тогда как быстрые ДЕ активны лишь при сильных мышечных напряжениях.

Основываясь на анализе ферментов мышечных волокон, их классифицируют на три вида: тип I, тип IIа, тип IIб.

В зависимости от скорости сокращения, аэробной и анаэробной возможности используют понятия: медленно-сокращающийся, окислительный тип (МО), быстро-сокращающийся, окислительно-гликолитический тип (БОГ) и быстро-сокращающийся, гликолитический тип (БГ).

Существуют и другие классификации ДЕ. Так, основываясь на двух параметрах – снижении прерывистого тетануса и сопротивлении утомлению – ДЕ делят на три группы (Burke, 1981): медленно сокращающиеся, невосприимчивые к утомлению (тип S); быстро сокращающиеся невосприимчивые к утомлению (тип FR) и быстро сокращающиеся восприимчивые к утомлению (тип FF).

Волокна I типа соответствуют волокнам типа МО, волокна IIа типа– волокнам типа БОГ, а волокна IIб типа– волокнам типа БГ. Мышечные волокна типа МО относятся к ДЕ типа S, волокна типа БОГ – к ДЕ типа FR, а волокна типа БГ – к ДЕ типа FF.

Каждая мышца человека содержит совокупность всех трех типов волокон. ДЕ типа FF характеризуется наибольшей силой сокращения, наименьшей продолжительностью сокращения и наибольшей восприимчивостью к утомлению.

Говоря о пропорциях различных мышечных волокон у человека, следует отметить, что и у мужчин, и у женщин несколько больше медленных волокон (по данным различных авторов –
от 52 до 55%).

Имеется строгая зависимость между количеством медленно- и быстро сокращающихся волокон в мышечной ткани и спортивными дости­жениями на спринтерских и стайерских дистанциях.

Икроножные мышцы чемпионов мира по марафону содержат 93–99% медленных волокон, тогда как у сильнейших спринтеров мира в этих мышцах больше количество быстрых волокон (92%).

У нетренированного человека число двигательных единиц, которые могут быть мобили-зованы при максимальных силовых напряжениях, обычно не превышает 25–30%, а у хорошо тренированных к силовым нагрузкам лиц число вовлеченных в работу моторных единиц может превышать 80–90%. В основе этого явления лежит адаптация центральной нервной системы, приводящая к повышению способности моторных центров мобилизовывать большее число мотонейронов и к совершенствованию межмышечной координации (рис. 35).

Рис. 35. Характеристика двигательных единиц


Скелетная (соматическая) мускулатура представлена большим количеством (более 200) мышц. Каждая мышца имеет опорную часть - соединительнотканную строму и рабочую часть - мышечную паренхиму. Чем большую статическую нагрузку выполняет мышца, тем больше развита в ней строма.

Снаружи мускул одет соединительнотканной оболочкой, которая называется наружным перимизием - perimysium. На различных мышцах он разной толщины. От наружного перимизия внутрь отходят соединительнотканные перегородки - внутренний перимизий, окружающий мышечные пучки различной величины. Чем большую статическую функцию несет мышца, тем более мощные соединительнотканные перегородки в ней расположены, тем их больше. На внутренних перегородках в мышцах могут закрепляться мышечные волокна, проходят сосуды и нервы. Между мышечными волокнами проходят очень нежные и тонкие соединительнотканные прослойки, называемые эндомизием - endomysium.

В этой строме мышцы, представленной наружным и внутренним перимизием и эндомизием, закономерно упакована мышечная ткань (мышечные волокна, образующие мышечные пучки), формирующая различной формы и величины мышечное брюшко. Строма мышцы по концам мышечного брюшка образует сплошные сухожилия, форма которых зависит от формы мышц. Если сухожилие шнурообразно, оно называется просто сухожилием - tendo. Если сухожилие плоское, идет от плоского мускульного брюшка, то оно называется апоневрозом.

В сухожилии также различают наружные и внутренние оболочки (мезотендиний - mesotendineum). Сухожилия очень плотны, компактны, образуют прочные шнуры, обладающие большой сопротивляемостью на разрыв. Коллагеновые волокна и пучки в них расположены строго продольно, благодаря чему сухожилия становятся менее утомляемой частью мышцы. Закрепляются сухожилия на костях, проникая в толщу костной ткани в виде шарпеевских волокон (связь с костью настолько крепка, что скорее разорвется сухожилие, чем оно оторвется от кости). Сухожилия могут переходить на поверхность мышцы и покрывать их на большем или меньшем расстоянии, образуя блестящую оболочку, которая называется сухожильным зеркалом.

В определенных участках в мышцу входят сосуды, ее кровоснабжающие, и нервы, ее иннервирующие. Место вступления их называется воротами органа. Внутри мышцы сосуды и нервы разветвляются по внутреннему перимизию и доходят до его рабочих единиц - мышечных волокон, на которые сосуды образуют сети капилляров, а нервы разветвляются на:

1) чувствительные волокна - идут от чувствительных нервных окончаний проприорецепторов, расположенных" во всех участках мышц и сухожилий, и выносят импульс, направляющийся через клетку спинального ганглия в мозг;

2) двигательные нервные волокна, проводящие импульс от мозга: а) к мышечным волокнам, заканчиваются на каждом мышечном волокне особой моторной бляшкой, б) к сосудам мышц - симпатические волокна, несущие импульс от мозга через клетку симпатического ганглия к гладким мышцам сосудов, в) трофические волокна, заканчивающиеся на соединительнотканной основе мышцы.

Поскольку рабочей единицей мышц является мышечное волокно, то именно их количество определяет силу мышцы; не от длины мышечных волокон, а от количества их в мышце зависит сила мышцы. Чем больше мышечных волокон в мышце, тем она сильнее. Длина мышечных волокон обычно не превышает 12-15 см, подъемная сила мышцы в среднем равна 8-10 кг на 1 см 2 физиологического поперечника. При сокращении мышца укорачивается на половину своей длины. Чтобы подсчитать количество мышечных волокон, делают разрез перпендикулярно их продольной, оси; полученная площадь поперечно перерезанных волокон - это физиологическими поперечник. Площадь разреза всей мышцы перпендикулярная ее продольной оси называется анатомическим поперечником. В одной и той же мышце может быть один анатомический и несколько физиологических поперечников, образовавшихся в том случае, если в мышце мышечные волокна короткие и имеют различное направление. Так как сила мышцы зависит от количества мышечных волокон в них, то она выражается отношением анатомического поперечника к физиологическому. В мышечном брюшке имеется всего один анатомический поперечник, а физиологических может быть различное количество (1:2, 1:3,..., 1:10 и т.д.). Большое количество физиологических поперечников свидетельствует о силе мышцы.

Мышцы бывают светлые и темные. Цвет их зависит от функции, строения и кровенаполнения. Темные мышцы богаты миоглобином (миогематином) и саркоплазмой, они более выносливые. Светлые мышцы беднее этими элементами, они более сильные, но менее выносливые. У разных животных, в различном возрасте и даже в разных участках тела цвет мышц бывает различен: самые темные они у лошади, гораздо светлее у свиней; у молодняка светлее, чему взрослых; на конечностях темнее, чем на теле; у диких животных темнее, чем у домашних; у кур грудные мышцы белые, у диких птиц темные.



Скелетные мышцы - активная часть опорно-двигатель­ного аппарата, включающего также кости, связки, сухожилия и их сочленения. С функциональной точки зрения к двигатель­ному аппарату можно отнести и мотонейроны, вызывающие возбуждение мышечных волокон. Аксон мотонейрона при вхо­де в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мы­шечном волокне.

Мотонейрон вместе с иннервируемыми им мышечными во­локнами называют нейромоторной (или двигательной) едини­цей (ДЕ). В глазных мышцах одна двигательная единица со­держит 13-20 мышечных волокон, в мышцах туловища - со 1 тни волокон, в камбаловидной мышце - 1500-2500 волокон. Мышечные волокна одной ДЕ имеют одинаковые морфофунк- циональные свойства.

Функциями скелетных мышц являются: 1) передвижение тела в пространстве; 2) перемещение частей тела относитель­но друг друга, втом числе осуществление дыхательных движе­ний, обеспечивающих вентиляцию легких; 3) поддержание по­ложения и позы тела. Кроме того, поперечно-полосатые мыш­цы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых пита­тельных веществ.

Физиологические свойства скелетных мышц выделяют:

1) возбудимость. Из-за высокой поляризации мембран поперечно-полосатых мышечных волокон (90 мВ) возбуди­мость их ниже, чем у нервных волокон. Амплитуда потенциала действия у них (130 мВ) больше, чем удругих возбудимых кле­ток. Это позволяет на практике достаточно легко регистриро­вать биоэлектрическую активность скелетных мышц. Дли­тельность потенциала действия составляет 3-5 мс. Этим определяется короткий период абсолютной рефрактерности мышечных волокон;

          проводимость. Скорость проведения возбуждения вдоль мембраны мышечного волокна составляет 3-5 м/с;

          сократимость. Представляет специфическое свойство мышечных волокон изменять свою длину и напряжение при развитии возбуждения.

Скелетные мышцы обладают также эластичностью и вязкостью.

Режимы и виды мышечных сокращений. Изотониче­ский режим - мышца укорачивается при отсутствии возрас­тания ее напряжения. Такое сокращение возможно только для изолированной (удаленной из организма) мышцы.

Изометрический режим - напряжение мышцы возрас­тает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим мышца укорачивается и возрастает ее напряжение. Такое сокращение чаще всего на­блюдается при осуществлении трудовой деятельности челове­ка. Вместо термина "ауксотонический режим" часто применя­ется название концентрический режим.

Выделяют два вида мышечных сокращений: одиночное и те- таническое.

Одиночное мышечное сокращение проявляется в резуль­тате развития одиночной волны возбуждения в мышечных во­локнах. Этого можно достичь при воздействии на мышцу очень коротким (около 1 мс) стимулом. В развитии одиночного мы­шечного сокращения выделяют латентный период, фазу уко­рочения и фазу расслабления. Сокращение мышцы начинает проявляться через 10 мс от начала воздействия раздражителя. Этот временной интервал называют латентным периодом (рис.5.1). Затем последует развитие укорочения (длитель­ность около 50 мс) и расслабления (50-60 мс). Считается, что на весь цикл одиночного мышечного сокращения затрачивает­ся в среднем 0,1 с. Но следует иметь в виду, что длительность одиночного сокращения у разных мышц может сильно варьи­ровать. Она также зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления за­медляется при развитии утомления мышцы. К быстрым мыш­цам, имеющим короткий период одиночного сокращения, от­носятся мышцы языка и смыкающие веко.

Рис. 5.1. Временные соотношения разных проявлений возбуждения волокна скелетной мышцы: а - соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокраще­ния: / - латентный период; 2 - укорочение; 3 - расслабление; б - соотношение потенциала действия, сокращения и уровня возбудимости

Под влиянием одиночного раздражителя вначале возникает потенциал действия и лишь затем начинает развиваться пери­од укорочения. Оно продолжается и после окончания реполя­ризации. Восстановление исходной поляризации сарколеммы свидетельствует и о восстановлении возбудимости. Следова­тельно, на фоне развивающегося сокращения в мышечных во­локнах можно вызвать новые волны возбуждения, сократи­тельный эффект от которых будет суммироваться.

Тетаническим сокращением или тетанусом называют сокращение мышцы, появляющееся в результате возникнове­ния в моторных единицах многочисленных волн возбуждения, сократительный эффект от которых суммируется по амплитуде и времени.

Различают зубчатый и гладкий тетанус. Для получения зуб­чатого тетануса надо стимулировать мышцу с такой частотой, чтобы каждое последующее воздействие наносилось после фа­зы укорочения, но до момента окончания расслабления. Гладкий тетанус получается при более частых раздражениях, когда по­следующие воздействия наносятся во время развития укороче­ния мышцы. Например, если фаза укорочения у мышцы состав­ляет 50 мс, а фаза расслабления - 60 мс, то для получения зуб­чатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого - с частотой не менее 20 Гц.

Несмотря

Амплитуда сокращений

расслабилась

Пессимум

на длящееся раздражение, мышца

30 Гц

1 Гц 7 Гц

200 Гц

50 Гц

Частота раздражения

Рис. 5.2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

Для демонстрации различных видов тетануса обычно ис­пользуют регистрацию сокращений изолированной икронож­ной мышцы лягушки на кимографе. Пример такой кимограм- мы представлен на рис. 5.2. Амплитуда одиночного сокраще­ния минимальна, увеличивается при зубчатом тетанусе и ста­новится максимальной - при гладком. Одной из причин такого возрастания амплитуды является то, что при возникновении частых волн возбуждения в саркоплазме мышечных волокон накапливается Са 2+ стимулирующий взаимодействие сокра­тительных белков.

При постепенном увеличении частоты раздражения нарас­тание силы и амплитуды сокращения мышцы идет лишь до не­которого предела - оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, назы­вают оптимальной. Дальнейшее увеличение частоты раздра­жения сопровождается уменьшением амплитуды и силы со­кращения. Это явление называют пессимумом ответной ре­акции, а частоты раздражения, превышающие оптимальную величину, - пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

При оценке функциональной активности мышц говорят об их тонусе и фазических сокращениях. Тонусом мышцы называ­ют состояние длительного непрерывного напряжения. При этом видимое укорочение мышцы может отсутствовать из-за того, что возбуждение возникает не во всех, а лишь в некоторых мо­торных единицах мышцы и они возбуждаются не синхронно. Фазическим сокращением мышцы называют кратковремен­ное укорочение мышцы, сменяющееся ее расслаблением.

Структурно -функциональная характеристика мышечно­го волокна. Структурной и функциональной единицей скелет­ной мышцы является мышечное волокно, представляющее со­бой вытянутую (длиной 0,5-40 см) многоядерную клетку. Тол­щина мышечных волокон составляет 10- 100 мкм. Диаметр их может увеличиваться при интенсивных тренировочных нагруз­ках, количество же мышечных волокон может нарастать лишь до 3-4-месячного возраста.

Мембрану мышечного волокна называют сарколеммой, цитоплазму - саркоплазмой. В саркоплазме располагаются ядра, многочисленные органеллы, саркоплазматический рети- кулум, в состав которого входят продольные трубочки и их утолщения - цистерны, в которых содержатся запасы Са 2+ Цистерны соседствуют с поперечными трубочками, пронизы­вающими волокно в поперечном направлении (рис. 5.3).

В саркоплазме вдоль мышечного волокна проходит около 2000 миофибрилл (толщиной около 1 мкм), которые включают нити, образованные сплетением молекул сократительных бел­ков: актина и миозина. Молекулы актина образуют тонкие нити (миофиламенты), которые лежат параллельно друг другу и про­низывают своеобразную мембрану, называемую Z-линией или полоской. Z-линии расположены перпендикулярно длинной оси миофибриллы и делят миофибриллу на участки длиной 2- 3 мкм. Эти участки называют саркомерами.

Цистерна Сарколемма

Поперечная трубочка

Саркомер

Трубочка с-п. рет^|

Jj3H сссс с_ з зззз tccc ;

; зззз сссс с

з зззз сссс с

j3333 СССС£

J3333 с с с с с_

J3333 сс с с с_

Саркомер сокращен

3 3333 сссс с

Саркомер расслаблен

Рис. 5.3. Строение саркомера мышечного волокна: Z-линии - ограничивают саркомер,/! - анизотропный (темный)диск, / - изотропный (светлый) диск, Н - зона (менее темная)

Саркомер является сократительной единицей миофибрил- лы- В центре саркомера строго упорядоченно друг над другом лежат толстые нити, сформированные молекулами миозина, flo краям саркомера аналогичным образом расположены тон­кие нити актина. Концы актиновых нитей заходят между кон­цами миозиновых нитей.

Центральная часть саркомера (ширина 1,6 мкм), в которой лежат мио- зиновые нити, под микроскопом выглядит темной. Этот темный участок прослеживается поперек всего мышечного волокна, так как саркомеры соседних миофибрилл располагаются строго симметрично друг над дру­гом. Темные участки саркомеров получили название А-дисков от слова "анизотропный" Эти участки обладают двойным лучепреломлением в поляризованном свете. Зоны по краям А-диска, где нити актина и миози­на перекрываются, кажутся темнее, чем в центре, где находятся только миозиновые нити. Этот центральный участок называют полоской Н.

Участки миофибриллы, в которых располагаются только актиновые нити, не обладают двойным лучепреломлением, они изотропны. Отсюда их название - I-диски. В центре I-диска проходит узкая темная линия, образованная Z-мембраной. Эта мембрана удерживает в упорядоченном состоянии актиновые нити двух соседних саркомеров.

В состав актиновой нити кроме молекул актина входят так­же белки тропомиозин и тропонин, влияющие на взаимодей­ствие нитей актина и миозина. В молекуле миозина выделяют участки, которые называют головкой, шейкой и хвостом. В каждой такой молекуле имеется один хвост и по две головки с шейками. На каждой головке имеется химический центр, ко­торый может присоединять АТФ и участок, позволяющий свя­зываться с актиновой нитью.

Молекулы миозина при формировании миозиновой нити сплетаются своими длинными хвостами, располагающимися в центре этой нити, а головки находятся ближе к ее концам (рис. 5.4). Шейка и головка образуют выступ, торчащий из мио­зиновых нитей. Эти выступы называют поперечными мостика­ми. Они подвижны, и благодаря таким мостикам миозиновые нити могут установить связь с актиновыми.

Когда к головке молекулы миозина присоединяется АТФ, то мостик на короткое время располагается под тупым углом относительно хвоста. В следующий момент происходит частич­ное расщепление АТФ и за счет этого головка приподнимает­ся, переходит в энергизированное положение, при котором она может связываться с актиновой нитью.

Молекулы актина образуют двойную спираль Тролонин

Центр связи с АТФ

Участок тонкой нити (вдоль цепочек актина располагаются молекулы тропомиозина, тролонин в узлах спирали)

Шейка

Хвост

Тропомиоэин т i

Молекула миозина при большом увеличении

Участок толстой нити (видны головки молекул миозина)

Нить актина

Головка

+Са 2+

Са 2+ "*Са 2+

АДФ- Ф

Са 2+ N

Расслабление

Цикл движений головки миозина при сокращении мышцы

миозина 0 +АТФ

Рис. 5.4. Структура нитей актина и миозина, движение головок миозина при сокращении и расслаблении мышцы. Объяснение в тексте: 1-4 - этапы цикла

Механизм сокращения мышечного волокна. Возбужде­ние волокна скелетной мышцы в условиях физиологической нормы вызывается только импульсами, приходящими от мото­нейронов. Нервный импульс активирует нервно-мышечный синапс, вызывает возникновение ПК.П, а потенциал концевой пластинки обеспечивает генерацию потенциала действия на сарколемме.

Потенциал действия распространяется как вдоль поверх­ностной мембраны мышечного волокна, так и вглубь по попе­речным трубочкам. При этом происходит деполяризация цис­терн саркоплазматического ретикулума и открытие Са 2+ -ка­налов. Поскольку в саркоплазме концентрация Са 2+ состав­ляет 1(Г 7 -1(Г б М, а в цистернах она приблизительно в 10 ООО раз большая, то при открытии Са 2+ -каналов кальций по градиенту концентрации выходит из цистерн в саркоплазму, диффундирует к миофиламентам и запускает процессы, обес­печивающие сокращение. Таким образом, выход ионов Са 2+

в саркоплазму является фактором, сопрягающим электриче­ские и механические явления в мышечном волокне. Ионы Са 2+ связываются с тропонином и это, при участии тропомио- зина, приводит к открытию (разблокировке) участков актино­вой нити, которые могут связываться с миозином. После этого энергизированные головки миозина образуют мостики с акти­ном, происходит окончательное расщепление АТФ, ранее за­хваченных и удерживаемых головками миозина. Получаемая от расщепления АТФ энергия идет на поворот головок миози­на в направлении к центру саркомера. При таком повороте головки миозина тянут за собой актиновые нити, продвигая их между миозиновыми. За одно грёбковое движение головка может продвинуть актиновую нить на-1 % от длины саркомера. Для максимального сокращения нужны повторные гребковые движения головок. Это имеет место при достаточной концен­трации АТФ и Са 2+ в саркоплазме. Для повторного движения головки миозина необходимо, чтобы к ней присоединилась новая молекула АТФ. Подсоединение АТФ вызывает разрыв связи головки миозина с актином и она на мгновение занимает исходное положение, из которого может переходить к взаимо­действию с новым участком актиновой нити и делать новое гребковое движение.

Такую теорию механизма мышечного сокращения назвали теорией "скользящих нитей"

Для расслабления мышечного волокна необходимо, чтобы концентрация ионов Са 2+ в саркоплазме стала менее Ю -7 М/л. Это происходит за счет функционирования кальциевого насо­са, который перегоняет Са 2+ из саркоплазмы в ретикулум. Кроме того, для расслабления мышцы необходимо, чтобы бы­ли разорваны мостики между головками миозина и актином. Такой разрыв происходит при наличии в саркоплазме молекул АТФ и связывания их с головками миозина. После отсоедине­ния головок эластические силы растягивают саркомер и пере­мещают нити актина в исходное положение. Эластические си­лы формируются за счет: 1) эластической тяги спиралевидных клеточных белков, входящих в структуру саркомера; 2) элас­тических свойств мембран саркоплазматического ретикулума и сарколеммы; 3) эластичности соединительной ткани мышцы, сухожилий и действия сил гравитации.

Сила мышц. Силу мышцы определяют по максимальной Величине груза, который она может поднять, либо по макси­мальной силе (напряжению), которую она может развить в условиях изометрического сокращения.

Одиночное мышечное волокно способно развить напряже­ние 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одно­временно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, фи­зиологических и физических факторов.

    Сила мышц возрастает с увеличением площади их гео­метрического и физиологического поперечного сечения. Для определения физиологического поперечного сечения мышцы находят сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно к ходу каждого мышеч­ного волокна.

В мышце с параллельным ходом волокон (портняжная) геометрическое и физиологическое поперечные сечения рав­ны. В мышцах с косым ходом волокон (межреберные) физио­логическое сечение больше геометрического и это способ­ствует увеличению силы мышц. Еще больше возрастает фи­зиологическое сечение и сила у мышц с перистым расположе­нием (большинство мышц тела) мышечных волокон.

Чтобы иметь возможность сопоставить силу мышечных во­локон в мышцах с различным гистологическим строением, ввели понятие абсолютной силы мышцы.

Абсолютная сила мышцы - максимальная сила, развива­емая мышцей, в перерасчете на 1 см 2 физиологического попе­речного сечения. Абсолютная сила бицепса - 11,9 кг/см 2 , трехглавой мышцы плеча - 16,8 кг/см 2 , икроножной 5,9 кг/см 2 , гладкой - 1 кг/см 2

    Сила мышцы зависит от процентного соотношения раз­личных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у людей неодинаково.

Выделяют следующие типы двигательных единиц: а) мед­ленные, неутомляемые (имеют красный цвет) - обладают ма­лой силой, но могут быть длительно в состоянии тонического сокращения без признаков утомления; б) быстрые, легко- утомляемые (имеют белый цвет) - их волокна обладают боль­шой силой сокращения; в) быстрые, устойчивые к утомлению - имеют относительно большую силу сокращения и в них мед­ленно развивается утомление.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено ге­нетически и может значительно различаться. Так, в четырех­главой мышце бедра человека относительное содержание мед- денных волокон может варьировать от 40 до 98%. Чем боль­ший процент медленных волокон в мышцах человека, тем бо­лее они приспособлены к длительной, но небольшой по мощности работе. Люди с высоким содержанием быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при умеренном ее растяже­нии. Это происходит из-за того, что при умеренном растяже­нии саркомера (до 2,2 мкм) увеличивается количество мости­ков, которые могут образоваться между актином и миозином. При растяжении мышцы в ней также развивается эластиче­ская тяга, направленная на укорочение. Эта тяга суммируется с силой, развиваемой движением головок миозина.

    Сила мышц регулируется нервной системой путем изме­нения частоты импульсаций, посылаемых к мышце, синхрони­зации возбуждения большого числа моторных единиц, выбора типов моторных единиц. Сила сокращений увеличивается: а) при возрастании количества возбуждаемых моторных еди­ниц, вовлекаемых в ответную реакцию; б) при увеличении час­тоты волн возбуждения в каждом из активируемых волокон; в) при синхронизации волн возбуждения в мышечных волок­нах; г) при активации сильных (белых) моторных единиц.

Сначала (при необходимости развития небольшого усилия) активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. А если надо развить силу более 20-25% от максимальной, то в сокращение вовле­каются быстрые легкоутомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, приходящих к мышечным волокнам.

При слабых сокращениях частота импульсаций в аксонах мотонейро­нов составляет 5-10 имп/с, а при большой силе сокращения может до­ходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, и это связано с увеличением количества миофибрилл. Увеличение числа во­локон незначительно.

При тренировке мышцу взрослых нарастание их силы свя­зано с увеличением числа миофибрилл, повышение же вынос­ливости обусловлено увеличением числа митохондрий и ин­тенсивности синтеза АТФ за счет аэробных процессов.

Существует взаимосвязь силы и скорости укорочения. Ско­рость сокращения мышцы тем выше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров) и зави­сит от нагрузки на мышцу. При увеличении нагрузки скорость сокращения уменьшается. Тяжелый груз можно поднять толь­ко при медленном движении. Максимальная скорость сокра­щения, достигаемая при сокращении мышц человека, около 8 м/с.

Сила сокращения мышцы снижается при развитии утом­ления.

Утомление и его физиологические основы. Утомлением называют временное понижение работоспособности, обуслов­ленное предыдущей работой и исчезающее после периода отдыха.

Утомление проявляется снижением мышечной силы, ско­рости и точности движений, изменением показателей работы кардиореспираторной системы и вегетативных регуляций, ухудшением показателей функций центральной нервной сис­темы. О последнем свидетельствует снижение скорости про­стейших психических реакций, ослабление внимания, памяти, ухудшение показателей мышления, возрастание количества ошибочных действий.

Субъективно утомление может проявляться ощущением усталости, появлением боли в мышцах, сердцебиением, симп­томами одышки, желанием снизить нагрузку или прекратить работу. Симптомы усталости могут различаться в зависимости от вида работы, ее интенсивности и степени утомления. Если утомление вызвано умственной работой, то, как правило, бо­лее выражены симптомы снижения функциональных возмож­ностей психической деятельности. При очень тяжелой мышеч­ной работе на первый план могут выступать симптомы нару­шений на уровне нервно-мышечного аппарата.

Утомление, развивающееся в условиях обычной трудовой деятельности как при мышечной, так и при умственной работе, имеет во многом сходные механизмы развития. В обоих случа­ях процессы утомления раньше всего развиваются в нервных центрах. Одним из показателей этого является снижение ум­ственной работоспособности при физическом утомлении, а при умственном утомлении - снижение эффективности мы­шечной деятельности.

Отдыхом называют состояние покоя или выполнение но­вой деятельности, при которых устраняется утомление и вос­станавливается работоспособность. И.М. Сеченов показал, что восстановление работоспособности происходит быстрее, если при отдыхе после утомления одной группы мышц(напри- мер, левой руки), выполнять работу другой группой мышц (правой рукой). Это явление он назвал "активным отдыхом"

Восстановлением называют процессы, обеспечивающие ликвидацию дефицита запасов энергетических и пластических веществ, воспроизведение израсходованных или поврежден­ных при работе структур, устранение избытка метаболитов и отклонений показателей гомеостаза от оптимального уровня.

Длительность периода, необходимого для восстановления организма, зависит от интенсивности и длительности работы. Чем больше интенсивность труда, тем через более короткое время необходимо делать периоды отдыха.

Различные показатели физиологических и биохимических процессов восстанавливаются через разное время от момента окончания физической нагрузки. Одним из важных тестов ско­рости восстановления является определение времени, в тече­ние которого частота сердечных сокращений возвращается к уровню, характерному для периода покоя. Время восстановле­ния частоты сердечных сокращений после теста с умеренной физической нагрузкой у здорового человека не должно превы­шать 5 мин.

При очень интенсивной физической нагрузке явления утомления развиваются не только в центральной нервной сис­теме, но и в нервно-мышечных синапсах, а также мышцах. В системе нервно-мышечного препарата наименьшей утомля­емостью обладают нервные волокна, наибольшей - нервно- мышечный синапс, промежуточное положение занимает мыш- Ца. Нервные волокна часами могут проводить высокую частоту потенциалов действия без признаков утомления. При частой Же активации синапса эффективность передачи возбуждения сначала уменьшается, а затем наступает блокада его проведе­ния. Это происходит из-за снижения запаса медиатора и АТФ в пресинаптической терминали, снижения чувствительности постсинаптической мембраны к ацетилхолину.

Был предложен ряд теорий механизма развития утомления в очень интенсивно работающей мышце: а) теория "истоще­ния" - израсходование запасов АТФ и источников ее образо­вания (креатинфосфата, гликогена, жирных кислот), б)теория "удушения" - на первое место выдвигается недостаток до­ставки кислорода в волокна работающей мышцы; в) теория "засорения", объясняющая утомление накоплением в мышце молочной кислоты и токсичных продуктов обмена веществ. В настоящее время считается, что все эти явления имеют мес­то при очень интенсивной работе мышцы.

Установлено, что максимальная физическая работа до раз­вития утомления выполняется при средней тяжести и темпе труда (правило средних нагрузок). В профилактике утомления важны также: правильное соотношение периодов труда и от­дыха, чередование умственной и физической работы, учет око­лосуточных (циркадных), годовых и индивидуальных биологи­ческих ритмов.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность развивает­ся при средней скорости укорочения мышц. Для мышцы руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

5.2. Гладкие мышцы

Физиологические свойства и особенности гладких мышц.

Гладкие мышцы являются составной частью некоторых внут­ренних органов и участвуют в обеспечении функций, выполня­емых этими органами. В частности, регулируют проходимость бронхов для воздуха, кровотока в различных органах и тканях, перемещения жидкостей и химуса (в желудке, кишечнике, мо­четочниках, мочевом и желчном пузырях), осуществляют из­гнание плода из матки, расширяют или сужают зрачки (за счет сокращения радиальных или циркулярных мышц радужной оболочки), изменяют положение волос и кожного рельефа. Гладкомышечные клетки имеют веретенообразную форму, длину 50-400 мкм, толщину 2-10 мкм.

Гладкие мышцы, как и скелетные, обладают возбудимос­тью, проводимостью и сократимостью. В отличие от скелетных м ышц, имеющих эластичность, гладкие - пластичны (способ­ны длительное время сохранять приданную им за счет растя­жения длину без увеличения напряжения). Такое свойство важно для выполнения функции депонирования пищи в желуд­ке или жидкостей в желчном и мочевом пузырях.

Особенности возбудимости гладкомышечных волокон в определенной мере связаны с их низким трансмембранным по­тенциалом (Е 0 = 30-70 мВ). Многие из этих волокон облада­ют автоматией. Длительность потенциала действия у них мо­жет достигать десятков миллисекунд. Так происходит потому, что потенциал действия в этих волокнах развивается преиму­щественно за счет входа кальция в саркоплазму из межклеточ­ной жидкости через так называемые медленные Са 2+ -каналы.

Скорость проведения возбуждения в гладкомышечных клетках малая - 2-10 см/с. В отличие от скелетных мышц возбуждение в гладкой мышце может передаваться с одного волокна на другое, рядом лежащее. Такая передача происходит благодаря наличию между гладкомышечными волокнами нек­сусов, обладающих малым сопротивлением электрическому току и обеспечивающих обмен между клетками Са 2+ и други­ми молекулами. В результате этого гладкая мышца имеет свойства функционального синтиция.

Сократимость гладкомышечных волокон отличается про­должительным латентным периодом (0,25-1,00 с) и большой длительностью (до 1 мин) одиночного сокращения. Гладкие мышцы имеют малую силу сокращения, но способны длительно находиться в тоническом сокращении без развития утомления. Это связано с тем, что на поддержание тетанического сокраще­ния гладкая мышца расходует в 100-500 раз меньше энергии, чем скелетная. Поэтому расходуемые гладкой мышцей запасы АТФ успевают восстанавливаться даже во время сокращения и гладкие мышцы некоторых структур организма всю жизнь нахо­дятся в состоянии тонического сокращения.

Условия сокращения гладкой мышцы. Важнейшей особен­ностью гладкомышечных волокон является то, что они возбужда­ются под влиянием многочисленных раздражителей. Сокраще­ние скелетной мышцы в норме инициируется только нервным им­пульсом, приходящим к нервно-мышечному синапсу. Сокраще­ние гладкой мышцы может быть вызвано как нервными Импульсами, так и биологически активными веществами (гормо­нами, многими нейромедиаторами, простагландинами, некоторы­ми метаболитами), а также воздействием физических факторов, например растяжением. Кроме того, возбуждение гладкой мыш­цы может произойти спонтанно - за счет автоматии.

Очень высокая реактивность гладких мышц, их свойство отвечать сокращением на действие разнообразных факторов создают значительные трудности для коррекции нарушений тонуса этих мышц в медицинской практике. Это видно на при­мерах лечения бронхиальной астмы, артериальной гиперто­нии, спастического колита и других заболеваний, требующих коррекции сократительной активности гладких мышц.

В молекулярном механизме сокращения гладкой мышцы также имеется ряд отличий от механизма сокращения скелетной мышцы. Нити актина и миозина в гладкомышечных волокнах располагаются менее упорядоченно, чем в скелетных, и поэтому гладкая мышца не имеет поперечной исчерченности. В актино- вых нитях гладкой мышцы нет белка тропонина и молекулярные центры актина всегда открыты для взаимодействия с головками миозина. Чтобы такое взаимодействие произошло, необходимо расщепление молекул АТФ и перенос фосфата на головки мио­зина. Тогда молекулы миозина сплетаются в нити и связывают­ся своими головками с миозином. Далее следует поворот голо­вок миозина, при котором актиновые нити втягиваются между миозиновыми и происходит сокращение.

Фосфорилирование головок миозина производится с помо­щью фермента киназы легких цепей миозина, а дефосфорили- рование - фосфатазы легких цепей миозина. Если активность фосфатазы миозина преобладает над активностью киназы, то головки миозина дефосфорилируются, связь миозина и актина разрывается и мышца расслабляется.

Следовательно, чтобы произошло сокращение гладкой мышцы, необходимо повышение активности киназы легких цепей миозина. Ее активность регулируется уровнем Са 2+ в саркоплазме. При возбуждении гладкомышечного волокна со­держание кальция в его саркоплазме увеличивается. Это уве­личение обусловлено поступлением Са^ + из двух источников: 1) межклеточного пространства; 2) саркоплазматического ре- тикулума (рис. 5.5). Далее ионы Са 2+ образуют комплекс с белком кальмодулином, который переводит в активное состо­яние киназу миозина.

Последовательность процессов, приводящих к развитию сокращения гладкой мышцы: вход Са 2 в саркоплазму - акти­

вация кальмодулина (путем образования комплекса 4Са 2+ - кальмодулин) - активация киназы легких цепей миозина - фосфорилирование головок миозина - связывание головок миозина с актином и поворот головок, при котором нити акти­на втягиваются между нитями миозина.

Условия, необходимые для расслабления гладкой мышцы: 1) снижение (до 10 М/л и менее) содержания Са 2+ в сарко­плазме; 2) распад комплекса 4Са 2+ -кальмодулин, приводя­щий к снижению активности киназы легких цепей миозина - дефосфорилирование головок миозина, приводящее к разрыву связей нитей актина и миозина. После этого силы упругости вызывают относительно медленное восстановление исходной длины гладкомышечного волокна, его расслабление.

Контрольные вопросы и задания

    Клеточная мембрана

    Рис. 5.5. Схема путей поступления Са 2+ в саркоплазму гладкомышеч-

    ной клетки и удаления его из плазмы: а - механизмы, обеспечивающие поступление Са 2 + в саркоплазму и запуск со- кращеня (Са 2+ поступает из внеклеточной среды и саркоплазматического рети- кулума); б - пути удаления Са 2+ из саркоплазмы и обеспечения расслабления

    Влияние норадреналина через а-адренорецепторы

    Лигандзависимый Са 2+ -канал

    Каналы "утечки г

    Потенциал зависимый Са 2+ -канал

    Гладкомышечная клетка

    а-адрено! рецептор f Норадре- налин G

    Назовите виды мышц человека. Каковы функции скелет­ных мышц?

    Дайте характеристику физиологических свойств скелет­ных мышц.

    Каково соотношение потенциала действия, сокращения и воз­будимости мышечного волокна?

    Какие существуют режимы и виды мышечных сокращений?

    Дайте структурно-функциональную характеристику мышеч­ного волокна.

    Что такое моторные единицы? Перечислите их виды и осо­бенности.

    Каков механизм сокращения и расслабления мышечного волокна?

    Что такое сила мышц и какие факторы на нее влияют?

    Какова связь между силой сокращения, его скоростью и работой?

    Дайте определение утомления и восстановления. Каковы их физиологические основы?

    Каковыфизиологические свойства и особенности гладких мышц?

    Перечислите условия сокращения и расслабления гладкой мышцы.

Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).

Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра. скелетный мышца строение развитие

Мышечное волокно, как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.

Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).

Рис. 1.

Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.

Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.

Рис. 2.

Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.

Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.

Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.

Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.

Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.

Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.

Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец - миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.

Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.

При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.

К основным функциональным свойствам мышечной ткани относятся возбудимость, сократимость, растяжимость, эластичность и пластичность.

Возбудимость - способность мышечной ткани приходить в состояние возбуждения при действии тех или иных раздражителей. В обычных условиях происходит электрическое возбуждение мышцы, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКП), достигнув порогового уровня (около 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны мышечного волокна.

Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около 90 мВ) потенциала покоя нервных волокон (70 мВ). Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.

Способность мышцы реагировать на раздражение ее двигательного мотонейрона, т.е. на импульсы, приходящие к ней по нерву, обозначается как непрямая возбудимость мышцы. Однако возбудимостью обладает и само мышечное волокно. Это доказывается раздражением участков мышцы, где отсутствуют окончания двигательного нерва.

Можно исключить влияние нервных элементов на мышцу, подвергнув ее отравлению некоторыми ядами (например, кураре). В этом случае возбуждение с нерва на мышцу не передается, но нерв и мышца сами по себе продолжают функционировать, т.е. мышца продолжает реагировать на непосредственно наносимое на нее раздражение. Таким образом, опыты подобного рода с несомненностью устанавливают наличие в мышечном волокне так называемой прямой возбудимости, т.е. способности мышечных волокон реагировать и на раздражение, действующее непосредственно и на них, а не через нервные волокна.

И прямая и непрямая возбудимость мышцы обусловлена функцией мембраны мышечного волокна. Возбуждение в мышцах проводится изолированно, т.е. не переходит с одного мышечного волокна на другое. Скорость распространения возбуждения в белых и красных волокнах скелетных мышц различна: в белых волокнах она равна 12 - 15, в красных - 3 - 4 м/с.

В мышцах имеется пассивный упругий компонент, который включает сухожилия, соединительную ткань, покрывающую мышечные волокна, их пучки и мышцу в целом, а также упругие образования боковых поперечных мостиков миозиновой нити. Поэтому скелетная мышца - упругое образование. Упругостью обладают активные сократительные и пассивные компоненты мышцы, которые и обеспечивают растяжимость, эластичность и пластичность мышц.

Растяжимость - свойство мышцы удлиняться под влиянием силы тяжести (нагрузки). Чем больше нагрузка, тем больше растяжимость мышцы. Растяжимость зависит и от вида мышечных волокон. Красные волокна растягиваются больше, чем белые, мышцы с параллельными волокнами удлиняются больше, чем перистые. Даже в условиях покоя мышцы всегда несколько растянуты, поэтому они упруго напряжены (находятся в состоянии мышечного тонуса).

Эластичность - свойство деформированного тела возвращаться к первоначальному своему состоянию после удаления силы, вызвавшей деформацию. Это свойство изучается при растяжении мышцы грузом. После удаления груза, мышца не всегда достигает первоначальной длины, особенно при длительном растяжении или под действием большого груза. Это связано с тем, что мышца теряет свойство совершенной упругости.

Пластичность - (греч. Plastikos - годный для лепки, податливый) свойство тела деформироваться под действием механических нагрузок, сохранять приданную или длину или вообще форму после прекращения действия внешней деформирующей силы. Чем длительнее действует большая внешняя сила, тем сильнее пластические изменения.

Пластичность мышц связана и с остаточным укорочением мышц после длительного тетанического сокращения, или контрактуры. Красные волокна, которые удерживают тело в определенном положении, обладают большей пластичностью, чем белые.

При прямом или непрямом раздражении мышца укорачивается или же развивает напряжение в продольном направлении. Это изменение формы или напряжения мышцы носит название мышечного сокращения, следовательно, сократимость - это специфическая деятельность мышечной ткани при ее возбуждении.

Для изучения свойств мышц в учебных целях и в эксперименте в качестве объекта обычно используют нервно-мышечный препарат лягушки, а в качестве раздражителя - электрический ток. Запись сокращений мышцы на приборе миографе при прямом или непрямом раздражении называется миографией. Скорость и сила ответной реакции скелетной мышцы на раздражение зависит не только от параметров раздражителя, но и от типа мышечных волокон. Сократимость и возбудимость мышц разного вида различна.

По скорости сокращения различают быстрые и медленные мышечные волокна. В быстрых волокнах обычно лучше развит саркоплазматический ретикулум, они слабее снабжены кровеносными сосудами, имеют более крупные и длинные волокна, их расслабление после сокращения происходит в 50 - 100 раз быстрее, чем медленных волокон. Организм для выполнения статической работы (например, поддержание позы) использует главным образом медленные, тонические красные мышцы, а для скоростных движений - быстрые белые мышцы.

Различают различные режимы сокращения мышц, которые определяются частотой и силой поступающих импульсов возбуждения.

На прямые и непрямые раздражения частотой не более 6 - 8 Гц мышца, состоящая из медленных двигательных единиц, отвечает одиночными сокращениями. Сокращение наступает не сразу после нанесения раздражения, а через определенный промежуток времени, называемый латентным периодом. Его величина составляет для икроножной мышцы лягушки 0,01 с. Фаза укорочения длится 0,04 с, фаза расслабления - 0,05 с.

Начало сокращения соответствует восходящей фазе потенциала действия, когда он достигает пороговой величины (примерно 40 мВ). У млекопитающих одиночное сокращение скелетных мышц длится 0,04 - 0,1 с, но оно неодинаково в различных мышцах у одного и того же животного. В красных волокнах мышц оно значительно больше, чем в белых. Если на мышцу действуют два быстро следующих друг за другом раздражения (период между импульсами не более 100 мс), мышечные волокна расслабляются не полностью и каждое последующее сокращение как бы наслаивается на предыдущее. Происходит суммация сокращений, которая может быть полной, когда оба сокращения сливаются, образуя одну вершину, или неполной, в зависимости от частоты раздражений. В обоих случаях сокращение имеет большую амплитуду, чем максимальное сокращение при одиночном раздражении.

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением или тетанусом. Этот термин впервые применил Э. Вебер в 1821 году.

Тетанус может быть зубчатым (при частоте раздражений 20 - 40 Гц) или сплошным, гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2 - 4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Импульсы с мотонейронов в условиях покоя участвуют в поддержании мышечного тонуса.

Под тонусом понимают состояние естественного постоянного напряжения мышц при невысоких энергетических затратах. В поддержании тонуса участвуют проприорецепторы мышц (мышечные веретена) и центральная нервная система.

Осуществление тонуса скелетных мышц обусловлено функцией медленных двигательных единиц красных волокон мышц. Тонус скелетных мышц связан с поступлением редких нервных импульсов к мышце, в результате чего мышечные волокна возбуждаются не одновременно, а попеременно. У домашних животных существуют специализированные рефлекторные дуги, одни из которых обеспечивают тетанические сокращения, а другие мышечный тонус. Тонус скелетных мышц играет важную роль в поддержании определенного положения тела в пространстве и деятельности двигательного аппарата.

При сближении актиновых и миозиновых фибрилл вследствие замыкания поперечных мостиков в мышечном волокне развивается напряжение (активная механическая тяга). В зависимости от условий, в которых происходит сокращение мышц, развивающееся напряжение реализуется по-разному. Различают два основных типа мышечных сокращений - изотонический и изометрический. Когда мышца при раздражении сокращается, не поднимая никакого груза, происходит укорочение мышечных волокон, но их напряжение не меняется и равно нулю, такое сокращение называют изотоническим (греч. isos - равный, tonos - напряжение). В эксперименте изотоническое сокращение получают при электрическом (тетаническом) раздражении изолированной мышцы, отягащенной небольшим грузом. Укорочение мышцы происходит при постоянном напряжении, равном внешней нагрузки.

Изометрическое (греч. isos - равный, meros - мера) - это сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает (сокращение при неизменной длине). В этом случае сократительный компонент укорачивается за счет растяжения пассивного упругого компонента, который может увеличивать свою длину на 2 - 6 % от длины покоя.

С молекулярной точки зрения напряжение при изотоническом сокращении обеспечивается замыканием и размыканием поперечных мостиков. При этом скорость сокращения зависит от числа замкнутых мостиков, образуемых в единицу времени (чем их меньше, тем больше скорость и соответственно меньше сила сокращения).

При изометрическом же сокращении напряжение в мышечных волокнах создается за счет повторного прикрепления поперечных мостиков на одних и тех же фиксированных участках актиновых нитей.

В естественных условиях деятельности мышц практически не встречается чисто изотоническое или чисто изометрическое сокращение.

Смешанный тип сокращения мышц, при котором изменяются длина и напряжение, называется ауксотоническим. При совершении животным сложных двигательных актов все работающие мышцы сокращаются ауксотонически - с преобладанием либо изотонического, либо изометрического типа сокращения.

Мембранный потенциал поперечно-полосатых мышечных волокон - (-80)- (-90) мВ, а пороговый уровень деполяризации - около -50 мВ ПД, возникая на постсинаптичній мембране мышечного волокна, распространяется сарколемою (мембраной, которая окружает мышечное волокно) в обе стороны от места образования (синапса). Он передается сарколемою електрогенно (аналогично передаче ПД безм"якушевим нервным волокном). Длительность ПД в большинстве скелетных мышц - 2-3 мс. В связи с этим, а также с необходимостью большей поляризации мембраны для возникновения спайка (МП КР = 40 мВ), скорость распространения ПД мембраной мышечного волокна составляет около 3-5 м1с. Через короткое время после поступления ПД мышечное волокно начинает сокращаться. Чтобы понять механизм сокращения мышцы, необходимо ознакомиться с его микроструктурой.

Структура мышечного волокна

Мышечное волокно в диаметре не превышает 0,1 мм, а длина его может составлять от нескольких миллиметров до 12 см (рис. 20).

Под световым микроскопом видно чередование темных и светлых полос (поперечная посмугованість). Темные диски (анизотропные диски - А) имеют двойную променезаломлюваність, светлые (изотропные диски - И) этого свойства не имеют. Часть мышечного волокна от середины одного изотропного диска до середины другого называют саркомером. Длина саркомера в мышце в состоянии покоя - около 2 мкм, а в сокращенном с максимальной силой-немного больше чем 1 мкм. (На рис. 20 изображен саркомер, ограниченный с двух сторон 2-линиями; И - изотропный диск; А - анизотропный диск; Н - участок с уменьшенной анізотропністю. Поперечный срез миофибриллы (д) дает представление о гексагональный распределение толстых и тонких міофіламентів).

Сарколема. Мембрана мышечного волокна - сарколема - образована типичной плазматичною мембраной, укрепленной соединительнотканными волокнами. Последние, сочетаясь у концов мышечных волокон, образуют сухожилки, с помощью которых мышца прикрепляется к костям.

Саркоплазма. В саркоплазмі мышечного волокна находится типичный набор органоидов. Но на особое внимание заслуживает один из них - саркоплазматич-

Рис. 20. в состав мышцы (а) входят мышечные волокна (б), каждое из которых содержит миофибриллы (в). Міофібрила (г) образована из толстых и тонких міофіламентів (г, д)

нийретикулум (СР). Это широко разветвленная сеть, состоящая из цистерн и трубочек, ограниченных двухслойными белково-ліпідними мембранами (рис. 21). Саркоплазматический ретикулум выполняет важную функцию в инициации сокращения мышцы как депо Са2+.

Рис. 21. (по Б.И. Ходоровим): а - распределение трубок (Т-системы) и СР внутри саркомера; б - триада: во время распространения ПД Т-трубкой из цистерны СР выделяются Са2 которые, связываясь с тропоніном в комплексе тропонін-тропоміозин, устраняют тормозное влияние на актиновий міофіламент. Поперечные мостики міозинових филаментов могут теперь взаимодействовать с актиновими філамснтами. Процесс расслабления связан с активным возвращением Са2+ в цистерны

Необходимо упомянуть и о наличии в саркоплазмі белка миоглобина, что служит депо кислорода внутри волокна.

Сократительные протофібрили. Внутри мышечного волокна в саркоплазмі упорядоченно располагаются сократительные протофібрили. Различают протофібрили двух типов: толстые (толщиной 15-17 нм) и тонкие (толщиной около 6 нм). Тонкие протофібрили расположены в И-зоне и с белковыми актиновими нитками. Толстые нити, которые размещены в зоне А, называют міозиновими (см. рис. 20).

Более двухсот молекул миозина участвуют в образовании міозинових филаментов (скрученные попарно, имеют виступний отросток головку). Головки направлены под углом от центра в сторону тонких нитей (напоминают "ерша" для мытья посуды). В основе головки миозина содержится фермент АТФаза, а на самой головке размещается молекула АТФ.

Лктинові філаменти скомпоновано из двух актинових нитей глобулярних молекул актина, имеют вид бусинок. Тонкие нити имеют активные центры, расположены друг от друга на расстоянии 40 нм, к которым могут прикрепляться головки миозина. Кроме актина в тонких нитях содержатся и другие белки - тропониновый комплекс (кальмодулин), который размещается над активными центрами, прикрывая их, что препятствует соединению актина с міозином.

Тонкие нити проходят через середину И-зоны в два близлежащих саркомери. Посередине этой зоны размещена Х-мембрана, что отделяет саркомери друг от друга. Таким образом, содержимое каждого саркомера изолированный сарколемою и Z-мембранами.

Механизм мышечного сокращения

Инициация мышечного сокращения. Распространяясь по наружной мембране, ПД заходит внутрь мышечного волокна (см. рис. 21), здесь он передается на мембрану саркоплазматичного ретикула, где открывает електрозбудливі кальциевые каналы. За то, что в саркоплазмі концентрация кальция меньше чем 10~7 моль1л, а в саркоплазматичному ретикулі - более 10 4 моль1л, начинается интенсивный выход его ионов в саркоплазме.

Выделенный кальций становится инициатором мышечного сокращения. Достаточный для начала мышечного сокращения уровень кальция достигается через 12-15 мс после прихода нервного импульса. Это скрытый, латентный, время мышечного сокращения. В связи с тем, что скорость распространения ПД сарколемою больше времени, необходимого для выделения Са2" из саркоплазматичного ретикула, все фибриллы участка мышцы, иннервируемых одним нервом, сокращаются одновременно.

В инициации мышечного сокращения после поступления в саркоплазме Са2+ определенную роль играет кальмодулин. Присоединяя Са2+, кальмодулин способствует активации Атфазы и использованию энергии АТФ для связи активного центра актинової нити с головкой миозина, а также укорочению мышцы (рис. 22). При соединении кальмодулина (тропонін С) с кальцием активный центр актина высвобождается, вследствие чего к нему присоединяется головка миозина. Эти процессы происходят в том случае, если концентрация свободного кальция в саркоплазмі возрастает в 100 и более раз: с 10"7 до 10~5 моль1л.

"Шарнирный механизм". Вследствие сочетания указанных процессов происходит:

а) подтягивание нитей миозина к атинових;

б) зарядка миозина энергией, которое применяется для выполнения поворота міозинової головки.

Рис. 22. а - поперечные мостики в состоянии расслабления мышечного волокна; 6 - во время сокращения (стрелками указано направление движения актинових протофібрил (и) двух половин саркомера); в - модель развития напряжения в поперечных мостиках

время их сокращения (слева - в состоянии расслабления, справа - во время сокращения мышечного волокна). 4 - шейка поперечного мостика; 5 - головка поперечного мостика

После этого образуемые фосфор и аденозиндифосфорна кислота (АДФ) уходят, а на их место присоединяется новая молекула АТФ, что приводит к разрыву связи миозина с активным центром актина.

При сокращении мышцы:

а) актинові и міозинові нити практически не укорачиваются;

б) взаимодействие актина с міозином приводит к взаимного вхождения нитей в промежутки между ними;

в) две прилегающие 7-мембраны сближаются друг с другом, и при максимально сильном сокращении расстояние между ними может уменьшиться почти вдвое;

г) при уменьшении длины мышцы саркомер расширяется, поскольку заключена внутри саркомера саркоплазма не сжимается;

г) подобные процессы одновременно протекают во всех саркомерах мышечного волокна, поэтому оба конца мышцы подтягиваются к центру.

в настоящее время еще окончательно неизвестен механизм, который обеспечивает вхождение актоміозинових нитей друг в друга. Общепринятая гипотеза "шарнирного механизма" (см. рис. 22). После соединения головки миозина с активным центром актина происходит ее поворот на 45°. Вследствие разрыва мостика шейка головки миозина выпрямляется, приобретая исходное положение. За такие движения эта система и получила название шарнирного механизма. Во время поворота миозин продвигается актином на один "шаг", или "гребок", равен 20 нм. Поступления новой порции Са2+ приводит к повторению "шага", но теперь уже другой головки, что оказалась напротив нового активного центра актина, поскольку они расположены на расстоянии около 40 нм друг от друга. В связи с тем что міозинові нити имеют биполярную организацию головок, то параллельные "гребки" их обеспечивают скольжение актинових нитей вдоль саркомера (от мембраны до его середины).

Расслабление мышцы.

Указанные процессы ("шаги") будут повторяться до тех пор, пока саркоплазма содержит свободный Са2" (в концентрации более 10-5 моль1л) и АТФ. Если нет новой волны деполяризации, кальций быстро возвращается обратно в цистерны саркоплазматичного ретикула. Он откачивается из саркоплазми против градиента концентрации с помощью Са2+-насоса, расположенного на мембране саркоплазматичного ретикула. Работа этого насоса, что требует большого количества АТФ (для удаления каждого Са2+ используется 2 молекулы АТФ), активируется самим кальцием, точнее, ростом его концентрации в саркоплазмі. Следствие откачивания кальция из саркоплазми - разрыв всех связей актина и миозина и расслаблению мышцы.

Энергетика мышечного сокращения

АТФ в мышце необходима для:

1) сокращения (образования мостиков);

2) расслабления (разрыва мостиков);

3) работы Са2+-насоса;

4) работы К* - насоса (для устранения нарушенных ионных градиентов вследствие поступления возбуждение).

Однако в саркоплазмі мышцы АТФ относительно немного. ее хватит лишь на несколько мышечных сокращений (примерно восемь одиночных сокращений). Вместе с тем в естественных условиях мышцы могут сокращаться длительное время, что становится возможным лишь благодаря активации механизмов ре-синтеза АТФ креатинфосфокіназного, гліколітичного, аэробного окисления.

Последовательность "включения" указанных путей ресинтеза АТФ такая. Сначала, сразу после гидролиза АТФ, начинается ее восстановление за счет креатинфосфата (КФ):

АДФ + КФ <=>АТФ + КФ.

Креатинфосфокіназний путь безынерционный (он запускается сразу АДФ, что образуется) и может обеспечить сокращение мышц в течение нескольких секунд. Одновременно с ним активируется гліколітичний путь. Образование АТФ во время гликолиза углеводов происходит при участии ферментов, активность которых возрастает постепенно от начала мышечных сокращений. Но уже через 15-20 с они становятся достаточно активными, чтобы подхватить эстафету ресинтеза АТФ при истощении КФ. Недостаток этого пути - меньший выход АТФ за единицу времени по сравнению с предыдущим. Кроме того, во время гликолиза образуются недоокиснені продукты (молочная, пировиноградная кислоты), что в случае интенсивного образования не успевают выйти из мышцы, приводя к нарушению в нем гомеостаза (сдвиг рН в кислую сторону).

Наибольшие возможности для ресинтеза АТФ имеет аэробное окисление (практически неограниченное время при адекватном поступлении кислорода и продуктов окисления). Но это найінерційніший путь, так как его ферментная система активируется медленно. На максимальный уровень активности она выходит через 2-3 мин от начала мышечной работы. Кроме митохондриальных ферментов самого мышечного волокна обеспечения указанного механизма ресинтеза АТФ требует адекватного снабжения мышц кислородом и исходными продуктами. К тому же производительность (количество синтезированной АТФ за единицу времени) аэробного окисления неодинакова в зависимости от соединения, окисляется: при окиснюванні углеводов энергии.

Естественно, что указанные возможности путей ресинтеза АТФ определяют работоспособность мышц.

Коэффициент полезного действия и теплообразование при мышечной работе

Согласно первому закону термодинамики (закон сохранения энергии) химическая энергия превращается в мышце, равна сумме механической энергии (работы) и теплотворность. Гидролиз одного моля АТФ обеспечивает получение 48 кДж энергии. Лишь 40-45 % ее превращается в механическую энергию, а остальные 55-60 % превращаются в на первоначальное тепло. Однако в природных условиях механическая эффективность мышечной деятельности, или коэффициент полезного действия, не превышает 20-30 %. Это обусловлено тем, что не вся энергия АТФ в мышце идет на собственно мышечное сокращение: часть ее расходуется на процессы восстановления. Следовательно, чем выше интенсивность мышечной работы, то более активные процессы теплообразование.

Типы и режимы мышечных сокращений

В естественных условиях оба конца мышцы прикрепляются с помощью сухожилий к костям и при сокращении притягивают их друг к другу. Если один конец мышцы (сустав) закреплен, то к нему подтягивается другой (рис. 23). Когда на этом конце мышцы прикреплен груз, который мышца поднять не в СОСТОЯНИИ, то он только напрягается, в таком случае его длина не меняется. Случаются и такие состояния, когда мышца постепенно увеличивается в длину (груз тяжелее, чем подъемная сила мышцы, или необходимо медленно опустить груз).

В экспериментальных условиях можно выделить один мускул, одно волокно и даже одну актоміозинову нить с нервом, иннервирует, или без него. Если закрепить один конец в штативе неподвижно, а к другому подвесить груз или устройство для регистрации, можно записать сокращение мышцы - міограму.

Вследствие этого различают следующие типы мышечных сокращений:

o ізотонічне (концентрическое) - сокращение мышц с укорочением при сохранении постоянного напряжения;

o изометрическое, когда длина мышцы не изменяется (напряжение);

o эксцентричное (плиометрическая), когда мышца удлиняется.

Как правило, большинство естественных сокращений мышц смешанные, то есть анізотонічного типа, когда мышца укорачивается в случае повышения напряжения.

На рис. 24, а приведены кривую одиночного сокращения. На ней можно различить фазы сокращения и расслабления. Вторая фаза более длительная. Время одного сокращения даже одиночного волокна значительно превышает время существования ПД.

Рис. 24. Разнообразные режимы сокращения мышц:

а - одиночные сокращения; в - неполный тетанус; г г - полный тетанус

Рис. 23. Взаимодействие мышц-сгибателей (а) и мышц-разгибателей (б)

Амплитуда одиночного сокращения изолированного мышечного волокна не зависит от силы раздражения, а подчиняется закону "все или ничего". В отличие от этого на сплошном мышце можно получить "лестница" (лестница Боудича): что большей силы (до определенной величины) раздражение, тем сильнее сокращение. Дальнейшее увеличение силы раздражения не влияет на амплитуду сокращения мышцы. Указанную закономерность прослеживают как при раздражении через нерв, так и в случае раздражения самой мышцы. Это обусловлено тем, что практически все мышцы (и нервы) смешанные, то есть состоят из множества двигательных единиц (РО), имеющих различную возбудимость.

Двигательная единица

Одиночное нервное волокно мотонейрона и мышечные волокна, что им иннервируются, составляют одну двигательную единицу (рис. 25). В большинстве скелетных мышц к двигательной единицы входит несколько сотен (даже тысяч) мышечных волокон. Даже в очень маленьких мышцах, от которых требуют высокой точности движений (глаз, кисти), в составе двигательной единицы может насчитываться 10-20 мышечных волокон. С функциональной точки зрения различают несколько типов двигательной единицы, которые можно сгруппировать следующим образом: быстрые и медленные. Функциональные их различия обусловлены соответствующими структурными особенностями, к тому же как на уровне сравнительно грубой морфологии, так и тонкого биохимического дифференцирования. Различные типы двигательных единиц отличают мышечные части, так и нервные волокна. Эти отличия и обеспечивают соответствующее функциональное проявление каждого типа двигательных единиц. Быстрые и медленные отличаются возбудимостью, скоростью проведения импульсов аксоном, оптимальной частотой импульсации и устойчивостью к утомлению после выполнения работы. К тому же в каждом типе мотонейрон и мышечные волокна как партнеры соединены друг с другом, что и обеспечивает их функциональные особенности.

Мотонейроны. Возбудимость или чувствительность к силе действующего раздражителя, мотонейронов одного и того же мышцы находится в обратной зависимости

Рис. 25.

1 - тело мотонейрона; 2 - ядро; С - дендриты; 4 - аксон; 5 - миелиновая оболочка аксона; 6 - концевые веточки аксона; 7 - нервно-мышечные синапсы

от размеров их тела: чем меньше мотонейрон, тем выше его возбудимость, то есть при меньшей силе раздражителя в них появляется ПД. Маленькие мотонейроны иннервируют сравнительно незначительное количество медленных мышечных волокон, большие - быстрые мышечные волокна, которых в одной двигательной единицы, как правило, много.

От величины нейрона зависит диаметр аксона и скорость проведения возбуждения по нему: она выше в больших мотонейронах. Кроме того, в таких мотонейронах могут возникать нервные импульсы с большой частотой. Следовательно, за счет изменения частоты импульсации мотонейрона мышечные волокна, входящие в состав соответствующей двигательной единицы, могут получать высокий частотный диапазон ПД, а это обусловит и большую силу их сокращения.

Каждому мотонейрону соответствует и структура мышечных волокон двигательной единицы. Так, скорость сокращения мышечного волокна находится в прямой зависимости от активности актоміозинової Атфазы (количества актинових и міозинових филаментов): чем выше ее активность, тем быстрее образуются актоміозинові мостики, и следовательно, выше скорость сокращения. Плотность "упаковка" актоміози новых филаментов в быстрых мышечных волокнах выше, чем в медленных. Кроме того, в скором волокне более выражен саркоплазматический ретикулум (депо кальция). Поэтому во время поступления ПД:

o скрытый время до начала сокращения меньший;

o плотность кальциевого насоса выше.

Итак, мышца быстрее сокращается и расслабляется. В быстром мышечном волокне повышена активность ферментов гликолиза, которые обеспечивают быстрое восстановление АТФ, которая расходуется во время выполнения интенсивных мышечных сокращений.

В отличие от этого в медленном мышечном волокне выше активность ферментов окисления, благодаря которым восстановление АТФ происходит хоть и медленнее, но зато экономически выгоднее. Так, если из 1 моля глюкозы в результате гликолиза образуется лишь 2-3 моля АТФ, то в случае аэробного окисления - 36-38 моль АТФ. Кроме того, во время гликолиза образуются недоокиснені субстраты (например, молочной кислоты), что "закиснюють" мышцу и снижают его работоспособность. Повышению работоспособности, улучшению условий окисления способствуют еще две структурные различия медленных мышечных волокон:

1) медленные волокна лучше, чем быстрые, обеспечиваются кислородом благодаря большей плотности кровеносных капилляров, окружающих их;

2) внутри медленных волокон содержится большое количество миоглобина, который придает им красную окраску и являются депо кислорода, что может применяться для окисления в момент мышечного сокращения, когда поступление кислорода с кровью затрудняется из-за сжатия кровеносных сосудов мышцей, которая сокращается.

Быстрые мышечные волокна имеют короткий период сокращения - до 7,5 мс, а медленные - довгий - до 100 мс.

Таким образом, подытоживая функциональные различия двигательных единиц, можно отметить: медленные двигательные единицы отличаются легкой возбудимостью, меньшей силой и скоростью сокращения при малой утомляемости и высокой выносливости. Быстрые двигательные единицы имеют противоположные свойства.

Исследования последних лет доказали, что каждый человек имеет врожденные различия процентного соотношения быстрых и медленных волокон в скелетных мышцах. Например, во внешнем мышце бедра диапазон колебания количества медленных волокон составляет от 13 до 96 %. Преимущество медленных волокон обеспечивает "стайерские", а малый их процент - "спринтерские" возможности спортсмена. К тому же компоновка различных мышц одного человека также различается. Так, в среднем содержание медленных волокон в триголовому мышце плеча составляет 33 %, двуглавому - 49, переднем великогомілковому - 46, камбало-образном - 84 %.

Суммация сокращения и тетанус

В естественных условиях жизни человека одиночных сокращений мышц не бывает. Обычно к мышцам нервные импульсы по мотонейронах поступают "пачками", то есть подряд по несколько штук с относительно незначительными временными промежутками. Это приводит к формированию не одного, а нескольких ПД и в самом скелетном мышце. Если на мышцу действуют не одиночные импульсы (ПД), а такие, которые быстро идут один за одним, то сократительные эффекты суммируются, и в результате этого мышца сокращается длительное время (см. рис. 24). К тому же если дальнейшие раздражители поступают в начальный момент расслабления, міографічна кривая будет зубчатой, а если до начала расслабления-без зазубрин. Такой тип сокращений называют тетанусом.

Различают зубчатый и непосмугований тетануси. Во время тетанусу не только удлиняется время сокращения, но и растет его сила. Это происходит из-за того, что в ответ на первый ПД успеют произойти лишь незначительные "шаги". Окончательный резерв создает возможность увеличить силу сокращения во время поступления дальнейших ПД. В этом случае концентрация кальция (количество актоміозинових мостиков) в таком мышечном волокне может быть такой же, как и во время одиночного сокращения.

Тетанічне сокращение вероятно прежде всего потому, что мембрана мышечного волокна способна проводить довольно частые ПД (более 100 в 1 с), поскольку рефрактерный период в скелетных мышцах гораздо короче собственно одиночного сокращения. Следовательно, когда к мышце поступают следующие ПД, он снова становится чувствителен к ним.

Частота и сила раздражителя, необходимые для выведения мышечного волокна в тетанус, не для всех мышц одинаковы, а зависят от особенностей их двигательной единицы. Продолжительность одного сокращения медленного мышечного волокна может достигать 100 мс, а быстрого - 10-30 мс. Поэтому для получения непосмугованого тетанусу в медленных волокнах достаточно 10-15 имп.1с, а быстрые нуждаются до 50 имп.1с и выше.

В природных условиях почти никогда не случается, чтобы все мышечные волокна находились в сокращенном состоянии. Поэтому при произвольном сокращении сила мышц меньше, чем в случае искусственного раздражения. На этом принципе основан механизм резкого повышения силы сокращения мышц в экстремальной ситуации: возрастает синхронность нервных импульсов, поступающих к различной двигательной единицы. Один из механизмов, обеспечивающих увеличение мышечной силы, например спортсмена во время тренировки, - рост синхронности сокращения отдельных двигательных единиц.

Максимальный ритм возбуждения. Предельный ритм возбуждения, обусловленный понятием лабильность, всех возбудимых тканей зависит от продолжительности периода, необходимого для восстановления чувствительности натриевых каналов после предыдущего раздражения, то есть от периода рефрактерности. Лабильность двигательной единицы, состоящий из трех структур (нерва, синапса, мышцы), определяют наиболее "узкой" звеном-синапсом, поскольку именно он имеет минимальную частоту передачи возбуждения. Мотонейроны, даже самые маленькие, способны проводить более 200 имп.1с, мышечные волокна-более 100 имп.1с, а нервно-мышечный синапс - меньше чем 100 имп.1с.

Функциональная характеристика скелетных мышц

Силу мышцы определяют силой тяги на ее концах. Максимальная сила тяги развивается во время изометрического сокращения мышцы при соблюдении следующих условий: а) активации всех двигательных единиц, из которых состоит эта мышца; б) начала сокращения мышцы при длине покоя; в) режима полного тетанусу во всех двигательных единиц.

Рис. 26. (по А.А. Ухтомским)

Для измерения силы мышцы определяют либо максимальный груз, который он сможет поднять, либо максимальное напряжение, которое он сможет развить в условиях изометрического сокращения. (Одиночное мышечное волокно способно развить напряжение 100-200 мг.) В теле человека содержится около 30 млн мышечных волокон и теоретически, если бы все они тянули в одну сторону, то создали бы напряжение до 30 т. Кроме того, необходимо учитывать еще и такие обстоятельства. Во-первых, сила различных мышечных волокон несколько отличается: быстрые двигательные единицы сильнее медленных. Во-вторых, сила мышцы зависит от ее поперечного сечения: чем больше объем мышцы, то он сильнее. К тому же в зависимости от хода волокон различают мышцы косые и прямые. Косой ход волокон обеспечивает большое количество мышечных волокон, проходящих через ее поперечное сечение, вследствие чего сила такого мышцы больше. Поэтому различают физиологический и анатомический поперечника мышцы: физиологический поперечник перпендикулярен к направлению мышечных волокон, а анатомический - до длины мышцы (рис. 26). Естественно, что в мышц с продольным направлением волокон оба названных поперечника совпадают, а в перистых - физиологический поперечник больше, чем анатомический, поэтому за одинакового анатомического поперечника последние сильнее. Например, относительная сила мышц человека (на 1 см2 площади поперечного сечения):

o голеностопный мышца - 5,9 кг;

o мышцу - сгибатель плеча - 8,1 кг;

o жевательный мускул - 10,0 кг;

o двуглавая мышца плеча - 11,4 кг;

o трехглавую мышцу плеча - 16,7 кг.

В естественных условиях на проявление мышечной силы влияют не только указанные выше три условия, но и угол, под которым мышца подходит к кости. Что больший угол прикрепления, то лучшие условия для проявления силы. Если мышца подходит к кости под прямым углом, почти вся его сила расходуется на обеспечение движения, а если под острым - часть силы идет на обеспечение движения, остальные - на сжатие рычага.

Утомление

Во время длительной или интенсивной мышечной работе развивается утомление, которое выражается вначале в снижении работоспособности, а затем и в прекращении работы. Утомление характеризуется соответствующими изменениями, которые возникают не только в мышцах, но и в системах, обслуживающих их.

Утомлением называют состояние, развивающееся вследствие работы и проявляется ухудшением двигательных и вегетативных функций организма, их координации. В этом случае снижается работоспособность, появляется чувство устали (психологическое состояние). Утомление - целостная реакция всего организма. Поэтому, когда ниже будет рассматриваться утомление нерва, синапса, мышц, необходимо помнить об условности этих понятий. Правильнее говорить о некоторых механизмах, определяющих "работоспособность" основных звеньев двигательной единицы - нервных, мышечных волокон, синапса.

Утомление нервного волокна. В природных условиях нервное волокно практически не устает. Проведение нервного импульса требует затраты энергии только для работы К+-насоса, что достаточно енергоекономічно. Системы ресинтеза АТФ вполне справляются с обеспечением энергией нервного волокна.

Утомление нервно-мышечного синапса. Работоспособность, то есть способность проводить возбуждение, у синапса значительно ниже, чем у нервного волокна. Это может быть следствием двух явлений. Депрессия передачи возбуждения в синапсе может спричинюватися истощением значительной части медиатора или ослаблением его восстановления при слишком высокой частоте ПД, поступающих нервным волокном. Кроме того, при интенсивной мышечной деятельности недоокиснені продукты (активно образуются во время гликолиза) снижают чувствительность постсинаптичної мембраны к медиатору АХ. Это приводит к снижению амплитуды каждого ПКП и при чрезмерном снижении возникновения ПД вообще становится невозможным.

Утомление мышечного волокна. Нарушение возбудимости и сократимости мышечного волокна в первую очередь обусловлено нарушением его энергетики, то есть механизмов ресинтеза АТФ. В этом случае решающим моментом становится интенсивность мышечной работы. Сверхвысокая ее активность связана с дефицитом креатинфосфокіназного пути или накоплением недоокисленных продуктов во время гликолиза. Последнее, с одной стороны, снижает чувствительность постсинаптичної мембраны, с другой - сдвигает рН саркоплазми в кислую сторону, что само по себе тормозит активность гликолитических ферментов. Все это и вызывает быстрое развитие утомления при интенсивной мышечной работе. Утомление во время длительной малоінтенсивної работы развивается медленно, что связано с нарушением механизмов регуляции со стороны центральных отделов нервной системы.



 

Возможно, будет полезно почитать: