В кислородном долге выделяют следующие фракции. Кислородный запрос и кислородный долг. Высшего профессионального образования

Природа предоставила нам возможность работать и в условияхнедостаточного снабжения тканей кислородом . При нехватке кислорода различают две реакции восстановления АТФ:

  • алактатную ) , т.е. без образования молочной кислоты(лактат – молочная кислота) ;
  • лактатную , т.е. с ее образованием.

Первая реакция (анаэробная алактатная ) – распад особого химического соединения –креатинфосфатной кислоты (КрФ), обеспечивающий быстрое восстановление АТФ. Однако запасы КрФ также ограничены и при максимально интенсивной работе быстро (в течение 10 сек) исчерпываются.

Вторая реакция (анаэробная лактатная ) – восстановление АТФ за счет энергии, образующейся при распадегликогена.

Анаэробная производительность (анаэробные возможности организма) – это способность человека работать в условиях недостатка кислорода за счет анаэробных источников энергии. Она зависит от ряда факторов (см. рис. 1).

Увеличение количества гликогена в мышцах

Увеличение количества креатинфосфата в мышцах

Анаэробная

производительность

Возрастание активности ферментных систем, катализирующих анаэробные реакции

Повышение устойчивости организма к высокой концентрации молочной кислоты в мышцах и крови

Рис. 1. Факторы, обеспечивающие анаэробную производительность организма (по В.М.Волкову, Е.Г.Мильнеру, 1987).

В процессе распада глюкозы образуется (при недостатке кислорода) молочная кислота. Накопление молочной кислоты в организме приводит к изменениюкислотно-щелочного равновесия (рН). Когда в организме накапливается слишком большое количество кислых продуктов обмена веществ, человек вынужден прекратить работу.

Для ликвидации этих продуктов также нужен кислород, ибо они разрушаются путем окисления. Но окисление это может происходить уже после окончания работы, ввосстановительный период .

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называетсякислородным долгом .

Кислородный долг главнейший показатель анаэробной производительности . Максимальный кислородный долг у людей, не занимающихся спортом, не превышает 4–5 л. У спортсменов высокого класса он может достигать 10–20 л.

Различают две части кислородного долга:алактатную илактатную.

Алактатная часть может составлять у спортсменов 2–4 л. Она идет на восстановление КрФ, отдавшего свою энергию ресинтезу АТФ, а также на восстановление израсходованных при работе запасов АТФ в мышцах.

Лактатная , большаячасть кислородного долга идет на ликвидацию накопившейся при работе в мышцах и крови молочной кислоты, которая в восстановительном периоде частично окисляется, частично используется при образовании запасов углеводов в печени и мышцах.

Содержание молочной кислоты у спортсменов высокого класса может доходить до 300 мг в 100 мл крови (в покое – 10–15 мг). Чтобы продолжать при этом работу, организм должен иметь мощныебуферные системы . У спортсменов мощность буферных систем крови и других тканей повышена. Но все же буферные системы не всегда могут полностью нейтрализовать кислые продукты обмена веществ, поступающие в кровь. Тогда происходит сдвиг рН крови вкислую сторону. Чтобы человек мог выполнять работу значительной мощности в условиях резких изменений внутренней среды организма, его ткани должны быть приспособлены к работе при недостатке кислорода и низком рН. Такое приспособление тканей служит одним из главных факторов, обеспечивающих высокую анаэробную производительность. Кроме того, способность человека работать при большом количестве накопившейся молочной кислоты во многом зависит и от кровоснабжения мозга и сердца. Эти органы должны получать достаточно кислорода даже в тех условиях, когда скелетные мышцы испытывают его дефицит.

Порог анаэробного обмена. При большой интенсивности бега дальнейшее увеличение скорости происходит за счет анаэробных источников энергии. Однако анаэробные процессы при беге включаются в восстановление АТФ не в тот момент, когда достигнут максимальный уровень потребления кислорода (МПК), а несколько раньше. Появление в организме первых признаков анаэробного ресинтеза АТФ называютпорогом анаэробного обмена (ПАНО). Измеряется ПАНО в процентах от МПК. У спортсменов разной квалификации ПАНО равен 50–70 % от уровня максимального потребления кислорода. Это значит, что анаэробный ресинтез АТФ начинается, когда потребление кислорода достигает 50–70 % от МПК данного человека. Чем выше ПАНО, тем более тяжелую работу спортсмен выполняет, восстанавливая АТФ за счет более экономных аэробных источников энергии .

Кислотно-щелочное равновесие и буферные зоны. В плазме крови содержатся ионы водорода. Они входят в состав всех кислот, и поэтому от их концентрации в крови зависит еекислотность. Для характеристики кислотности крови пользуются водородным показателем, обозначаемымрН (водородный показатель – логарифм концентрации водородных ионов, взятый с обратным знаком). Для дистиллированной воды величина рН составляет 7,07; кислая среда имеет рН меньше, щелочная – больше. Водородный показатель артериальной крови в среднем равен 7,4, венозной – несколько меньше. Это означает, что кровь имеетслабокислую реакцию . При физической работе в плазму крови попадает большое количество кислых продуктов обмена веществ. Однако при самой тяжелой работе рН крови не падает ниже 7,0. При большом сдвиге рН крови в кислую сторону человек вынужден прекратить работу.

Кислотно-щелочное равновесие в крови и тканях обеспечивается наличием в них особых веществ, образующих буферные системы. Существует несколько буферных систем:

  • карбонатная система , деятельность которой обусловлена угольной кислотой и ее солями;
  • фосфатная система , в состав которой входят соли фосфорной кислоты;
  • буферная система белков плазмы ;
  • буферная система гемоглобина (ей принадлежит самая большая роль, так как она обеспечивает около 75 % буферной способности крови).

К примеру, если в кровь поступает какая-либокислота , более сильная, чем угольная (например, молочная), она вступает в реакцию с бикарбонатом. В результате образуется соль этой кислоты и угольная кислота, которая расщепляется на СО 2 и Н 2 О. Углекислота выделяется из организма через легкие, что обеспечивает сохранение рН крови на постоянном уровне. Если в кровь поступаютщелочные продукты , то они связываются кислотами буферных систем. Это предохраняет организм от сдвига рН крови и тканей в щелочную сторону.

Щелочи буферных систем крови, способные связывать кислоты, образующиеся в процессе обмена веществ, называютсящелочным резервом . Он определяется количеством углекислого газа (вмл ), находящегося в химически связанном состоянии (т.е. в виде Н 2 СО 3 и NаHCO 3) в 100 мл плазмы крови. У здорового человека этот показатель равен 50–65 мл.

Постоянство рН тканей и крови обеспечивается легкими (освобождение организма от углекислого газа), почками и потовыми железами.

При интенсивной физической работе в кровь поступает значительное количество недоокисленных продуктов обмена, с повышением мощности работы их количество увеличивается. Например, содержание молочной кислоты может достигать 200–250 мг в 100 мл крови, т.е. увеличиться в 20–25 раз по сравнению с состоянием покоя.

Занятия оздоровительным бегом повышают возможности буферных систем крови и тканей.

В процессе мышечной работы расходуются кислородный запас организма, фосфагены (АТФ и КрФ), углеводы, (гликоген мышц и печени, глюкоза крови) и жиры. После работы происходит их восстановление. Исключение составляют жиры, восстановления которых может и не быть.

В осстановительные процессы, происходящие в организме после работы, находят свое энергетическое отражение в повышенном (п" сравнению с предрабочим состоянием) потреблении кислорода - кислородном долге (см. рис. 12). Согласно оригинальной теории А. Хйлла (1922), кислородный долг - это избыточное потребление О2 сверх предрабочего уровня покоя, которое обеспечивает энергией организм для восстановления до предрабочего состояния, включая восстановление израсходованных во время работы запасов энергии и устранение молочной кислоты. Скорость потребления О2 после работы снижается экспоненциально: на протяжении первых 2-3 мин очень быстро (быстрый, или алактатньш, компонент кислородного долга), а затем более медленно (медленный, или лактатный, компонент кислородного долга), пока не достигает (через 30-60 мин) постоянной величины, близкой к предрабочей.

П осле работы мощностью до 60% от МПК кислородный долг не намного превышает кислородный дефицит. После более интенсивных упражнений кислородный долг значительно превышает кислородный дефицит, причем тем больше, чем выше мощность работы (рис. 24).

Б ыстрый (алактатный) компонент О2-долга связан главным образом с использованием О2 на быстрое восстановление израсходованных за время работы высокоэнергетических фосфагенов в рабочих мышцах, а также с восстановлением нормального содержания О2 в венозной крови и с насыщением миоглобина кислородом.

М едленный (лактатный) компонент О2-долга связан со многими факторами. В большой мере он связан с после-рабочим устранением лактата из крови и тканевых жидкостей. Кислород в этом случае используется в окислительных реакциях, обеспечивающих ресинтез гликогена из лактата крови (главным образом, в печени и отчасти в почках) и окисление лактата в сердечной и скелетных мышцах. Кроме того, длительное повышение потребления О2 связано с необходимостью поддерживать усиленную деятельность дыхательной и сердечно-сосудистой систем в период восстановления, усиленный обмен веществ и другие процессы, которые обусловлены длительно сохраняющейся повышенной активностью симпатической нервной и гормональной систем, повышенной температурой тела, также медленно снижающимися на протяжении периода восстановления.

Восстановление запасов кислорода. Кислород находится в мышцах в форме химической связи с миоглобином. Эти запасы очень невелики: каждый килограмм мышечной массы содержит около 11 мл О2. Следовательно, общие запасы "мышечного" кислорода (из расчета на 40 кг мышечной массы у спортсменов) не превышают 0,5 л. В процессе мышечной работы он может быстро расходоваться, а после работы быстро восстанавливаться. Скорость восстановления запасов кислорода зависит лишь от доставки его к мышцам.

С разу после прекращения работы артериальная кровь, проходящая через мышцы, имеет высокое парциальное напряжение (содержание) О2, так что восстановление О2-миоглобина происходит, вероятно, за несколько секунд. Расходуемый при этом кислород составляет некоторую часть быстрой фракции кислородного долга, в которую входит также небольшой объем О2 (до 0,2 л), идущий, на восполнение нормального содержания его в венозной крови.

Т аким образом, уже через несколько секунд после прекращения работы кислородные "запасы" в мышцах и крови восстанавливаются. Парциальное напряжение О2 в альвеолярном воздухе и в артериальной крови не только достигает предрабочего уровня, но и превышает его. Быстро восстанавливается также содержание О2 в венозной крови, оттекающей от работавших мышц и других активных.органов и тка-"ней тела, что указывает на достаточное их обеспечение кислородом в послерабочий период. Поэтому нет никаких физиологических оснований использовать дыхание чистым кислородом или смесью с повышенным содержанием кислорода после работы для ускорения процессов восстановления.

Восстановление фосфагенов (АТФ и КрФ). Фосфагены, особенно АТФ, восстанавливаются очень быстро (рис. 25). Уже на протяжении 30 с после прекращения работы восстанавливается до 70% израсходованных фосфагенов, а их полное восполнение заканчивается за несколько минут, причем почти исключительно за счет энергии аэробного метаболизма, т. е. благодаря кислороду, потребляемому в быструю фазу О2-долга. Действительно, если сразу после работы жгутировать работающую конечность и таким образом лишить мышцы кислорода, доставляемого с кровью, то восстановление КрФ не произойдет.

Чем больше расход фосфагенов за. время работы, тем больше требуется О2 для их восстановления (для восстановления 1 моля АТФ необходимо 3,45 л О2). Величина быстрой (алактатной) фракции О2-долга прямо связана со степенью- снижения фосфагенов в мышцах к концу работы. Поэтому данная величина указывает на количество израсходованных в процессе работы фосфагенов.

У нетренированных мужчин максимальная величина быстрой фракции О2-долга достигает 2-3 л. Особенно большие величины этого показателя зарегистрированы у представителей скоростно-силовых видов спорта (до 7 л у высококвалифицированных спортсменов). В этих видах спорта содержание фосфагенов и скорость их расходования в мышцах прямо определяют максимальную и поддерживаемую (дистанционную) мощность упражнения.

Восстановление гликогена. По первоначальным представлениям Р. Маргария и др. (1933), израсходованный за время работы гликоген ресинтезируется из молочной кислоты на протяжении 1-2 ч после работы. Расходуемый в этот период восстановления кислород определяет вторую, медленную, или лактатную, фракцию О2-Долга. Однако в настоящее время установлено, что восстановление гликогена в мышцах может длиться до 2-3 дней

С корость восстановления гликогена и количество его восстанавливаемых запасов в мышцах и печени зависит от двух основных факторов: степени расходования гликогена в процессе работы и характера пищевого рациона в период восстановления. После очень значительного (более 3/4 исходного содержания), вплоть до полного, истощения гликогена в рабочих мышцах его восстановление в первые часы при обычном питании идет очень медленно, и для достижения предрабочего уровня требуется до 2 суток. При пищевом рационе с высоким содержанием углеводов (более 70% суточного калоража) этот процесс ускоряется - уже за первые 10 ч в рабочих мышцах восстанавливается более половины гликогена, к концу суток происходит его полное восстановление, а в печени содержание гликогена значительно превышает обычное. В дальнейшем количество гликогена в рабочих мышцах и в.печени продолжает увеличиваться и через 2-3 суток после "истощающей" нагрузки может превышать предрабочее в 1,5-3 раза - феномен суперкомпенсации (см. рис. 21, кривая 2).

При ежедневных интенсивных и длительных тренировочных занятиях содержание гликогена в рабочих мышцах и печени существенно снижается ото дня ко дню, так как при обычном пищевом рационе даже суточного перерыва между тренировками недостаточно для полного восстановления гликогена. Увеличение содержания углеводов в пищевом рационе спортсмена может обеспечить полное восстановление углеводных ресурсов организма к следующему тренировочному занятию (рис. 26).У странение молочной кислоты. В период восстановления происходит устранение молочной кислоты из рабочих мышц, крови и тканевой жидкости, причем тем быстрее, чем меньше образовалось молочной кислоты во время работы. Важную роль играет также послерабочий режим. Так, после максимальной нагрузки для полного устранения накопившейся молочной кислоты требуется 60-90 мин в условиях полного покоя - сидя или лежа (пассивное восстановление). Однако, если после такой нагрузки выполняется легкая работа (активное восстановление), то устранение молочной Кислоты происходит значительно быстрее. У нетренированных людей оптимальная интенсивность "восстанавливающей" нагрузки - примерно 30-45% от МПК (например, бег трусцой), а. у хорошо тренированных спортсменов - 50-60% от МПК, общей продолжительностью примерно 20 мин (рис. 27).

С уществует четыре основных пути устранения молочной кислоты: 1) окисление до СО2 и ШО (так устраняется примерно 70% всей накопленной молочной кислоты); 2) превращение в гликоген (в мышцах и печени) и в глюкозу (в печени) -около 20%; 3) превращение в белки (менее 10%); 4) удаление с мочой и потом (1-2%). При активном восстановлении доля молочной кислоты, устраняемой аэробным путем, увеличивается. Хотя окисление молочной кислоты может происходить в самых разных органах и тканях (скелетных мышцах, мышце сердца, печени, почках и др.), наибольшая ее часть окисляется в скелетных мышцах (особенно их медленных волокнах) . Это делает понятным, почему легкая работа (в ней участвуют в основном медленные мышечные волокна) способствует более быстрому устранению лактата после тяжелых нагрузок.

З начительная часть медленной (лактатной) фракции О2-долга связана с устранением молочной кислоты. Чем интенсивнее нагрузка, тем больше эта фракция. У нетренированных людей она достигает максимально 5-10 л, у спортсменов, особенно у представителей скоростно-силовых видов спорта, - 15-20 л. Длительность ее - около часа. Величина и продолжительность лактатной фрак-ции О2-долга уменьшаются при активном восстановлении.


Wikimedia Foundation . 2010 .

Смотреть что такое "Кислородный долг" в других словарях:

    кислородный долг - rus кислородный долг (м), кислородная задолженность (ж) eng oxygen debt fra dette (f) d oxygène deu Sauerstoffschuld (f) spa deuda (f) de oxígeno … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    кислородный долг - deguonies skola statusas T sritis Kūno kultūra ir sportas apibrėžtis Laikinas deguonies stygius, pasireiškiantis po fizinio krūvio. Atsiradimo priežastys: kraujo ir audinių deguonies atsargų atkūrimas, padidėjęs vegetacinių sistemų aktyvumas,… … Sporto terminų žodynas

    Количество кислорода, необходимое для окисления накопившихся в организме при интенсивной мышечной работе недоокисленных продуктов обмена … Большой медицинский словарь

    Основной функцией мышечной системы человека и животных является двигательная деятельность. Мышцы обеспечивают перемещение тела в пространстве или отдельных его частей относительно друг друга, т.е. производят работу. Этот вид М.р. называют… … Медицинская энциклопедия

    Раздел физиологии, изучающий закономерности протекания физиологических процессов и особенности их регуляции при трудовой деятельности человека, т. е. трудовой процесс в его физиологических проявлениях. Ф. т. решает две основные задачи:… …

    Хилл (Hill) Арчибалд Вивиен (р. 26.9.1886, Бристоль, Англия), английский физиолог, член Лондонского королевского общества (с 1918, в 1935‒45 секретарь). Окончил Кембриджский университет (1907). В 1914‒19 преподавал физическую химию в Кембриджском … Большая советская энциклопедия

    I (Hill) Арчибалд Вивиен (р. 26.9.1886, Бристоль, Англия), английский физиолог, член Лондонского королевского общества (с 1918, в 1935 45 секретарь). Окончил Кембриджский университет (1907). В 1914 19 преподавал физическую химию в… … Большая советская энциклопедия

    I Дыхание (respiratio) совокупность процессов, обеспечивающих поступление из атмосферного воздуха в организм кислорода, использование его в биологическом окислении органических веществ и удаление из организма углекислого газа. В результате… … Медицинская энциклопедия

    I (sanguis) жидкая ткань, осуществляющая в организме транспорт химических веществ (в т.ч. кислорода), благодаря которому происходит интеграция биохимических процессов, протекающих в различных клетках и межклеточных пространствах, в единую систему … Медицинская энциклопедия

    - (Hill, Archibald Vivian) (1886 1977), английский физиолог, удостоенный в 1922 Нобелевской премии по физиологии и медицине (совместно с О.Мейергофом) за исследования метаболизма углеводов и теплообразования в мышцах. Родился 26 сентября 1886 в… … Энциклопедия Кольера

Максимальный уровень потребления кислорода характеризует мощность аэробных процессов энергообеспечения. Максимальный кислородный долг отражает емкость анаэробных процессов. Ниже на рис. 4 показана динамика прироста уровня потребления кислорода Ro/ t , л/мин во время работы в течение 4 мин и во время последующего восстановления в течение 30 - 40 мин. Наибольший уровень потребления в конце упражнения будет соответствовать максимальному рабочему уровню потребления кислорода. Суммарное потребление кислорода во время восстановления равно кислородному долгу.

Рис. 8 Уровень потребления кислорода во время упражнения (4 мин)и восстановления (до 30 - 40мин)

Сумма потребления кислорода во время работы и восстановления определяют энергетические затраты спортсмена и составляют кислородный запрос.

RO 2 = VO 2 +S DO 2 , л.

В свою очередь кислородный долг равен сумме алактатной и лактатной фракции

S DO 2 = DO 2 al + DO 2 lact ,л.

Уровень кислородного запроса составит

RO 2 / t = VO 2 / t + Σ DO 2 / t , л/мин.

Динамику потребления кислорода во время работы можно представить двухкомпонентным экспоненциальным уравнением с предельным значением, равным максимальному рабочему уровню для данного упражнения Снижение уровня потребления во время восстановления может быть также выражено экспоненциальной функцией с более быстрой алактатной и медленной дактатной фракцией.

Для определения максимального уровня потребления кислорода используются различные методы:

1)метод однократной предельной нагрузки в течение 5 - 6 мин,

2)метод повторных упражнений с возрастающей нагрузкой до достижения максимума аэробной производительности,

3)метод ступенчатого увеличения нагрузки во время однократного выполнения упражнения,

4)метод непрерывного линейного увеличения нагрузки во время однократного выполнения упражнения. Применяются также другие методы.

Следует обратить внимание, что только в первом методе имеется возможность достаточно точно определить внешнюю работу. Последнее важно для определения взаимосвязи с достижениями спортсмена.

Максимальный уровень потребления кислорода зависит от производительности сердца и артериовенозной разницы насыщения крови кислородом

VO 2 /t max = Q (A - B) = SV HR (A- B), (8)

где VO2/tmax - максимальный уровень потребления кислорода, л/мин,
Q - производительность сердца, л/мин,
(А - В) - артерио-венозная разница насыщения крови кислородом, мл О2/ 100 мл крови,
SV - ударный объем сердца, мл/уд.,
HR - частота сердечных сокращений, уд./мин.


Известно, что производительность сердца в спортивной деятельности составляет от 20 - 30 л/мин до 40 л/мин, ударный объем - от 130 до 200 мл/уд, частота сердечных сокращений достигает 200 уд/мин и больше. При интенсивной нагрузке артерио-венозная разница достигает 15 - 20 О2 мл/100 мл крови.


Таким образом, уровень аэробной энергетической производительности характеризуется двумя основными факторами: циркуляторными механизмами.и дыханием.


Дыхание разделяется на внешнее и тканевое. В свою очередь, указанные показатели зависят от ряда факторов кислородной емкости крови, скорости диффузии О2 из ткани, жизненной емкости крови, глубины и частоты дыхания, максимальной вентиляции легких, диффузионной способности легких, процента используемого кислорода, структуры и количества метахондрий, запасов энергетических субстратов, мощности окислительных ферментов, капилляризации мышц, объемной скорости кровотока в тканях, кислотно-щелочного равновесия крови и т. д.


В литературе в настоящее время имеются многочисленные данные о максимальном потреблении кислорода и его величинах на единицу массы тела у спортсменов различной специализации. Наибольшие величины максимального потребления кислорода до 6,7 л/мин наблюдаются у лыжников-гонщиков и гребцов в академической гребле. Высокие величины у лыжников объясняются в значительной степени тем, что они соревнуются и тренируются на пересеченной местности с преодолением большего числа подъемов и спусков. Гребцы при высокой собственной массе тела в силу конструкции лодки развивают на дистанции 2000 м высокую мощность.


В беговых упражнениях, в плавании, в конькобежном и велосипедном спорте максимальный уровень потребления находится в пределах 5,2 - 5,6 л/мин. По потреблению кислорода на единицу массы тела наибольшие значения наблюдаются у лыжников и бегунов-стайеров до 84 мл/ кг/мин. У гребцов эта величина составляет 67 мл/кг/мин ввиду того, что их масса тела находится обычно в пределах 90 - 100 кг и больше. Относительно низкие величины также наблюдаются у бегунов и конькобежцев спринтеров. Следует иметь в виду, что в плавании и гребле уровень потребления кислорода на единицу веса имеет меньшее значение, чем в других видах спорта, т. к. упражнение выполняется в воде, где существенное значение имеет не масса тела, а обтекаемость и плавучесть.


Рекордные величины уровня потребления кислорода наблюдаются у лыжников- гонщиков до 7,41 л/мин и до 94 мл/кг/мин.

Максимальный кислородный долг определяется после повторных упражнений высокой интенсивности (обычно выше 95 - 97 % к максимальной скорости на отрезке). В спортивном плавании такими упражнениями могут быть дистанции 4 х 50 м с отдыхом 15 - 30 с, в беге 4 х 400 м, на велоэргометре по вторные упражнения длительностью до 60 с. Во всех случаях упражнения выполняются до отказа, длительность повторных упражнений не превышает 60с, при увеличении отдыха интенсивность упражнений возрастает.


Кислородный долг определяется путем анализа газовых объемов, забранных во время восстановления после упражнений. Размеры газовых приходов определяются путем вычитания из потребления кислорода величины О2 - потребления покоя. Последний определяется после 30 мин отдыха перед упражнением в покое сидя (SMR- sitting metabolic rate), все измерения газовых объемов приводятся к STPD. Расчет величины общего кислородного долга, его алактатной и лактатной фракции проводится путем анализа зависимости «уровень прихода О2 - время восстановления» и решения биэкспоненциального уравнения. Следует иметь в виду, что поскольку основная лактатная фракция кислородного долга имеет высокую корреляцию с концентрацией молочной кислоты в крови после упражнения (до 0,95 и выше), то в спортивной практике для оценки анаэробных возможностей спортсмена используют определение лактата крови. Последняя процедура существенно проще, удобнее и требует меньше времени и аппаратуры.


Анаэробная энергетическая производительность зависит от ряда факторов: уровня развития компенсаторных механизмов и буферных систем, позволяющих выполнять напряженную работу в условиях сдвига внутренней среды (в сторону ацидоза) и препятствующих этому сдвигу; эффективности (мощности) анаэробных ферментативных систем; запаса в мышцах энергетических систем; адаптации спортсмена к выполнению упражнений в условиях кислородного долга.


Наибольшие величины кислородного долга получены после четырехкратного пробегания 400 м с сокращающимся отдыхом - до 26,26 л, после четырехкратного проплывания 50 м с отдыхом 15 с - до 14,43 л, на велоэргометре после повторных упражнений высокой интенсивности - до 8,28 л/ 406,505/. В табл. 10 приведены значения максимального потребления кислорода, кислородного долга и его фракций по обследованию 80 пловцов (возраст- 16,7  1,75 лет, длина тела 174,6  6,92см, масса тела 66,97  9,4 кг) и 78 гребцов (возраст 22,9  3,66 лет, длина тела 187,41  4,21см, масса 86,49  5,6 кг). Энергетические показатели для конькобежцев и бегунов приведены по данным Н. И. Волкова и В. С. Иванова.


Таблица 5
Средние значения максимального уровня потребления кислорода, кислородного долга и его фракций в циклических видах спорта у спортсменов с достижениями разного уровня

Вид спорта

Энергетические

показатели

МСМК

разряд

разряд

Легкоатлетический

V ¢ O 2max, л/мин

S DO 2,л

D O 2 al , л

D O 2 lact , л

Конькобежный

V¢ O 2max, л/мин

S D O 2,л

D O 2 al

D O 2 lac t ,л

Плавание

V ¢ O 2,мах л/мин

S D O 2,л

D O 2 al

D O 2 lac t ,л

Академическая

V ¢ O 2,мах л/мин

S D O 2,л

D O 2 al

D O 2 lact

Следует обратить внимание, что у легкоатлетов разной квалификации наблюдаются высокие величины лактатной фракции кислородного долга. В то же время алактатная фракция во всех видах упражнений не имеет такого явного отличия.


Отмечена высокая статистическая связь рассмотренных двух основных энергетических показателей с достижениями на дистанциях разной длины при значительных по объему и растянутых по квалификации группировках. У пловцов наибольшая связь максимального уровня потребления кислорода наблюдается с достижениями на 200м - 0,822, суммарного кислородного долга на 100 м - 0,766, лактатной и алактатной фракции с результатами на 50 м (табл. 11).

Таблиц 6
Коэффициенты корреляции между энергетическими показателями и скоростью плавания на дистанциях различной длины (n = 80, при р  0,05 r = 0,22)

Энергетические

Показатели

Дистанции, м

Аэробная система представляет собой окисление питательных веществ в митохондриях для получения энергии. Это значит, что глюкоза, жирные кислоты и аминокислоты пищевых веществ, как показано слева на рисунке, после некоторой промежуточной обработки соединяются с кислородом, высвобождая громадное количество энергии, которая используется для превращения АМФ и АДФ в АТФ.

Сравнение аэробного механизма получения энергии с системой гликоген-молочная кислота и фосфагенной системой по относительной максимальной скорости генерации мощности, выраженной в молях АТФ, образующихся в минуту, дает следующий результат.

Таким образом, можно легко понять, что фосфагенную систему используют мышцы для всплесков мощности длительностью в несколько секунд, но аэробная система необходима для длительной спортивной активности. Между ними располагается система гликоген-молочная кислота, которая особенно важна для обеспечения дополнительной мощности во время промежуточных по длительности нагрузок (например, забеги на 200 и 800 м).

Какие энергетические системы используются в разных видах спорта? Зная силу физической активности и ее длительность для разных видов спорта, легко понять, какая из энергетических систем используется для каждого из них.

Восстановление мышечных метаболических систем после физической деятельности. Подобно тому, как энергия фосфокреатина может использоваться для восстановления АТФ, энергия системы гликоген-молочная кислота может использоваться для восстановления и фосфокреатина, и АТФ. Энергия окислительного метаболизма может восстанавливать все другие системы, АТФ, фосфокреатин и систему гликоген-молочная кислота.

Восстановление молочной кислоты означает просто удаление ее избытка, накопленного во всех жидкостях тела. Это особенно важно, поскольку молочная кислота вызывает чрезвычайное утомление. При наличии достаточного количества энергии, генерируемой окислительным метаболизмом, удаление молочной кислоты осуществляется двумя путями: (1) небольшая часть молочной кислоты снова превращается в пировиноградную кислоту и затем подвергается окислительному метаболизму в тканях организма; (2) остальная часть молочной кислоты вновь превращается в глюкозу, главным образом в печени. Глюкоза, в свою очередь, используется для восполнения запаса гликогена в мышцах.

Восстановление аэробной системы после физической активности. Даже на ранних стадиях тяжелой физической работы способность человека к синтезу энергии аэробным путем частично снижается. Это связано с двумя эффектами: (1) так называемым кислородным долгом; (2) истощением запасов гликогена в мышцах.

Кислородный долг . В норме тело содержит примерно 2 л находящегося в запасе кислорода, который может быть использован для аэробного метаболизма даже без вдыхания новых порций кислорода. В этот запас кислорода входят: (1) 0,5 л, находящиеся в воздухе легких; (2) 0,25 л, растворенные в жидкостях тела; (3) 1 л, связанный с гемоглобином крови; (4) 0,3 л, которые хранятся в самих мышечных волокнах, в основном в соединении с миоглобином - веществом, которое похоже на гемоглобин и подобно ему связывает кислород.

При тяжелой физической работе почти весь запас кислорода используется для аэробного метаболизма в течение примерно 1 мин. Затем после окончания физической нагрузки этот запас должен быть возмещен за счет вдыхания дополнительного количества кислорода по сравнению с потребностями в покое. Кроме того, около 9 л кислорода должны быть израсходованы на восстановление фосфагенной системы и молочной кислоты. Дополнительный кислород, который должен быть возмещен, называют кислородным долгом (около 11,5 л).

Рисунок иллюстрирует принцип кислородного долга . В течение первых 4 мин человек выполняет тяжелую физическую работу, и скорость потребления кислорода возрастает более чем в 15 раз. Затем после окончания физической работы потребление кислорода все еще остается выше нормы, причем сначала - значительно выше, пока восстанавливается фосфагенная система и возмещается запас кислорода как часть кислородного долга, а в течение следующих 40 мин более медленно удаляется молочная кислота. Раннюю часть кислородного долга, количество которого составляет 3,5 л, называют алактацидным кислородным долгом (не связанным с молочной кислотой). Позднюю часть долга, составляющую примерно 8 л кислорода, называют лактацидным кислородным долгом (связанным с удалением молочной кислоты).



 

Возможно, будет полезно почитать: