Способ измерения комплайнса легких. Определение условного рефлекса. Различия между условными и безусловными рефлексами. Значение условнорефлекторной деятельности в жизни человека и животных. Классификация условных рефлексов

Давления:

Paw – давление в дыхательных путях Pbs - давление на поверхности тела Ppl - плевральное давление

Palvальвеолярное давление Pes - пищеводное давление Градиенты:

Ptr-трансреспиратонное давление Ptr = Paw – Pbs Ptt-трансторакальное давление Ptt = Palv – Pbs Pl-транспульмональное давление Pl = Palv – Ppl Pw-трансмуральное давление Pw = Ppl – Pbs

(Легко запомнить: если использована приставка «транс» – речь идёт о градиенте).

Главной движущей силой, позволяющей сделать вдох, является разность давлений на входе в дыхательные пути (Pawopressure airway opening) и давление в том месте, где дыхательные пути заканчиваются – то есть в альвеолах (Palv). Проблема в том, что в альвеолах технически сложно померить давление. Поэтому для оценки дыхательного усилия на спонтанном дыхании оценивают градиент между пищеводным давлением (Pes), при соблюдении условий измерения

А. Г Орячев

И. САвИн

оно равно плевральному(Ppl), и давлением на входе в дыхательные пути (Pawo).

При управлении аппаратом ИВЛ наиболее доступным и информативным является градиент между давлением в дыхательных путях (Paw) и давлением на поверхности тела (Pbspressure body surface). Этот градиент (Ptr) называется «трансреспиратораное давление», и вот как он создаётся:

1. При NPV Pawo соответствует атмосферному, то есть ноль, а Pbs становится отрицательным в результате работы аппарата.

Аппарат ИВЛ NPV типа «Kirassa»

2. При PPV Давление на поверхности тела (Pbs) равно нулю, то есть соответствует атмосферному, а Pawo выше атмосферного, то есть положительное.

Как видите, ни один из методов ИВЛ не соответствует полностью спонтанному дыханию, но если оценивать воздействие на венозный возврат и лимфоотток аппараты ИВЛ NPV типа «Kirassa» кажутся более физиологичными. Аппараты ИВЛNPV типа «Iron lung», создавая отрицательное давление над всей поверхностью тела, снижают венозный возврат и, соответственно, сердечный выброс.

Без Ньютона здесь не обойтись.

Исаак Ньютон

Давление (pressure) – это сила, с которой ткани лёгких и грудной клетки противодействуют вводимому объёму, или, иными словами, сила, с которой аппарат ИВЛ преодолевает сопротивление дыхательных путей, эластическую тягу лёгких и мышечно-связочных структур грудной клетки (по третьему за-

кону Ньютона это одно и то же поскольку «сила действия равна силе противодействия»).

Equation of Motion уравнение сил, или третий закон Ньютона для системы «аппарат ИВЛ – пациент»

В том случае, если аппарат ИВЛ осуществляет вдох синхронно с дыхательной попыткой пациента, давление, создаваемое аппаратом ИВЛ (Pvent), суммируется с мышечным усилием пациента (Pmus) (левая часть уравнения) для преодоления упругости легких и грудной клетки(elastance) и сопротивления(resistance) потоку воздуха в дыхательных путях (правая часть уравнения).

Pmus + Pvent = Pelastic + Presistive

(давление измеряют в миллибарах)

Pelastic= E x V

(произведение упругости на объём)

А. Г Орячев

И. САвИн

Респираторная механика - необходимый минимум

Presistive = R x V̇

(произведение сопротивления на поток)

соответственно

Pmus + Pvent = E x V + Rx V̇

Pmus(мбар)+ Pvent(мбар)= E (мбар/мл)x V(мл)+ R (мбар/л/мин)x

V ̇ л/мин)(

Заодно вспомним, размерность E - elastance (упругость) показывает на сколько миллибар возрастает давление в резервуаре на вводимую единицу объёма (мбар/мл) ;R - resistance сопротивление потоку воздуха проходящему через дыхательные пути(мбар/л/мин) .

Ну и для чего нам пригодится это Equation of Motion (уравнение сил)?

Понимание уравнения сил позволяет нам делать три вещи: Во-первых, любой аппарат ИВЛPPV может управлять одно-

моментно только одним из изменяемых параметров входящих в это уравнение. Эти изменяемые параметры – давление объём и поток. Поэтому существуют три способа управления вдохом: pressure control, volume control, илиflow control. Реализация варианта вдоха зависит от конструкции аппарата ИВЛ и выбранного режима ИВЛ.

Во-вторых, на основе уравнения сил созданы интеллектуальные программы, благодаря которым аппарат рассчитывает показатели респираторной механики (например.:compliance (растяжимость), resistance (сопротивление) иtime constant (постоянная времени«τ» ).

В-третьих, без понимания уравнения сил не понять такие режимы вентиляции как“proportional assist”, “automatic tube compensation”, и“adaptive support”.

Главные расчетные параметры респираторной механики resistance, elastance, compliance

1. Сопротивление дыхательных путей (airway resistance)

Сокращенное обозначение – Raw . Размерность – смН2 О/Л/сек или мбар/мл/сек

Норма для здорового человека – 0,6-2,4 смН2 О/Л/сек.

Физический смысл данного показателя говорит, каким должен быть градиент давлений (нагнетающее давление) в данной системе, чтобы обеспечить поток 1 литр в секунду. Современному аппарату ИВЛ несложно рассчитать резистанс (airway resistance), у него есть датчики давления и потока – разделил давление на поток, и готов результат.

Для расчета рези тансс аппарат ИВЛ делит разность (градиент) максимального давления вдоха (PIP) и давления плато вдоха (Pplateau) на поток (V̇ .)

Raw = (PIP–Pplateau)/V̇

– Что и чему сопротивляется?

Респираторная механика рассматривает сопротивление дыхательных путей воздушному потоку. Сопротивление (airway resistance) зависит от длины, диаметра и проходимости дыхательных путей, эндотрахеальной трубки и дыхательного контура аппарата ИВЛ. Сопротивление потоку возрастает, в частности, если происходит накопление и задержка мокроты в дыхательных путях, на стенках эндотрахеальной трубки, скопление конденсата в шлангах дыхательного контура или деформация (перегиб) любой из трубок. Сопротивление дыхательных путей растёт при всех хронических и острых обструктивных заболеваниях лёгких, приводящих к уменьшению диаметра воздухоносных путей. В соответствии с законом ГагенаПуазеля при уменьшении диаметра трубки вдвое для обеспечения того же потока градиент давлений, создающий этот поток (нагнетающее давление), должен быть увеличен в 16 раз.

Важно иметь в виду, что сопротивление всей системы определяется зоной максимального сопротивления (самым узким местом). Устра-

А. Г Орячев

И. САвИн

Респираторная механика - необходимый минимум

нение этого препятствия (например, удаление инородного тела из дыхательных путей, устранение стеноза трахеи или интубация при остром отёке гортани) позволяет нормализовать условия вентиляции легких. Термин резистанс широко используется российскими реаниматологами как существительное мужского рода. Смысл термина соответствует мировым стандартам.

Важно помнить, что:

1. Аппарат ИВЛ может измерить резистанс только в условиях принудительной вентиляции у релаксированного пациента.

2. Когда мы говорим о резистанс (Raw или сопротивлении дыхательных путей) мы анализируем обструктивные проблемы преимущественно связанные с состоянием проходимости дыхательных путей.

3. Чем больше поток, тем выше рези тансс .

2. Упругость (elastance) и податливость (compliance)

Прежде всего, следует знать, это строго противоположные по-

нятия и elastance =1 / сompliance. Смысл понятия «упругость»

подразумевает способность физического тела при деформации сохранять прилагаемое усилие, а при восстановлении формы – возвращать это усилие. Наиболее наглядно это свойство проявляется у стальных пружин или резиновых изделий. Специалисты по ИВЛ при настройке и тестировании аппаратов в качестве модели легких используют резиновый мешок. Упругость дыхательной системы обозначается символом E. Размерность упругостимбар/мл, это означает: на сколько миллибар следует поднять давление в системе, чтобы объём увеличился на 1 мл. Данный термин широко используется в работах по физиологии дыхания, а специалисты по ИВЛ пользуются понятием обратным «упругости» – это «растяжимость»(compliance) (иногда говорят «податливость»).

Почему? – Самое простое объяснение:

На мониторах аппаратов ИВЛ выводится compliance , вот мы им и пользуемся.

Термин комплайнс (compliance) используется как существи-

тельное мужского рода российскими реаниматологами так же часто, как и резистанс (всегда когда монитор аппарата ИВЛ показывает эти параметры).

Размерность комплайнса –мл/мбар показывает, на сколько миллилитров увеличивается объём при повышении давления на 1 миллибар.

В реальной клинической ситуации у пациента на ИВЛ измеряют комплайнс респираторной системы – то есть легких и грудной клетки вместе. Для обозначениякомплайнс используют символы:Crs (compliance respiratory system) –комплайнс дыхательной системы иCst (compliance static) –комплайнс статический, это синонимы. Для того, чтобы рассчитать статическийкомплайнс, аппарат ИВЛ делит дыхательный объём на давление в момент инспираторной паузы (нет потока – нетрези танс)с.

Cst = VT /(Pplateau –PEEP)

Норма Cst (комплайнсастатического) – 60-100мл/мбар

Приводимая ниже схема показывает, как на основе двухкомпонентной модели рассчитывается сопротивление потоку (Raw), статиче-

А. Г Орячев

И. САвИн

Респираторная механика - необходимый минимум

ский комплайнс (Cst) и упругость(elastance) дыхательной системы.

Важно иметь в виду, что измерения выполняются у релаксированного пациента в условиях ИВЛ, управляемой по объёму с переключением на выдох по времени. Это значит, что после того, как объём доставлен, на высоте вдоха клапаны вдоха и выдоха закрыты. В этот момент измеряется давление плато.

Важно помнить, что:

1. Аппарат ИВЛ может измерить Cst (комплайнс статический) только в условиях принудительной вентиляции у релаксированного пациента во время инспираторной паузы.

2.Когда мы говорим о статическом комплайнсе (Cst, Crs или растяжимости респираторной системы), мы анализируем рестриктивные проблемы преимущественно связанные с состоянием легочной паренхимы.

Философское резюме можно выразить двусмысленным утверждением:

Поток создаёт давление

Обе трактовки соответствуют действительности, то есть: вопервых, поток создаётся градиентом давлений, а во-вторых, когда поток наталкивается на препятствие (сопротивление дыхательных путей), давление увеличивается. Кажущаяся речевая небрежность, когда вместо «градиент давлений» мы говорим «давление», рождается из клинической реальности: все датчики давления расположены со стороны дыхательного контура аппарата ИВЛ. Для того, чтобы измерить давление в трахее и рассчитать градиент, необходимо остановить поток и дождаться выравнивания давления с обоих концов эндотрахеальной трубки. Поэтому в практике обычно мы пользуемся показателями давления в дыхательном контуре аппарата ИВЛ.

По эту сторону эндотрахеальной трубки для обеспечения вдоха объёмом Х мл за времяY сек мы можем повышать давление вдоха (и соответственно градиент) на сколько у нас хватит здравого смысла и клинического опыта, поскольку возможности аппарата

ИВЛ огромны.

По ту сторону эндотрахеальной трубки у нас находится пациент, и у него для обеспечения выдоха объёмом Х мл за времяY сек есть только сила упругости легких и грудной клетки и сила его дыхательной мускулатуры (если он не релаксирован). Возможности пациента создавать поток выдоха ограничены. Как мы уже предупреждали, «поток – это скорость изменения объёма», поэтому для обеспечения эффективного выдоханужно предоставить пациенту время .

Постоянная времени (τ)

Так в отечественных руководствах по физиологии дыхания называется Time constant. Это произведениекомплайнс нарези тансс.

вот такая формула. Размерность постоянной времени, естественно секунды. Действительно, ведь мы умножаем мл/мбар намбар/мл/сек. Постоянная времени отражает одновременно эластические свойства дыхательной системы и сопротивление дыхательных путей. У разных людейτ разная. Понять физический смысл данной константы легче, начав с выдоха. Представим себе, завершён вдох, – начат выдох. Под действием эластических сил дыхательной системы воздух выталкивается из лёгких, преодолевая сопротивление дыхательных путей.

Сколько времени займёт пассивный выдох?

– Постоянную времени умножить на пять (τ х 5 ). Так устроены легкие человека. Если аппарат ИВЛ обеспечивает вдох, создавая постоянное давление в дыхательных путях, то у релаксированного пациента максимальный для данного давления дыхательный объём будет доставлен за то же время (τ х 5 ).

А. Г Орячев

И. САвИн

Респираторная механика - необходимый минимум

Данный график показывает зависимость процентной величины дыхательного объёма от времени при постоянном давлении вдоха или пассивном выдохе.

При выдохе по истечении времени τ пациент успевает выдохнуть 63% дыхательного объёма, за время 2τ – 87%, а за время 3τ – 95% дыхательного объёма. При вдохе с постоянным давлением аналогичная картина.

Практическое значение постоянной времени:

Если время, предоставляемое пациенту для выдоха <5τ , то после каждого вдоха часть дыхательного объёма будет задерживаться в легких пациента.

Максимальный дыхательный объём при вдохе с постоянным давлением поступит за время 5τ.

При математическом анализе графика кривой объёма выдоха расчет

www. nsicu. ru


1. Сопротивление дыхательных путей (airway resistance)
Сокращенное обозначение - Raw.Размерность - смН2О/Л/сек или мбар/мл/секНорма для здорового человека - 0,6-2,4 смН2О/Л/сек.
Физический смысл данного показателя говорит, каким долженбыть градиент давлений (нагнетающее давление) в данной системе,чтобы обеспечить поток 1 литр в секунду. Современному аппаратуИВЛ несложно рассчитать резистанс (airway resistance),у него естьдатчики давления и потока - разделил давление на поток, и готов результат.
Для расчета резистанс аппарат ИВЛ делит разность (градиент) максимального давления вдоха (PIP) и давления плато вдоха (Pplateau)напоток (V).
Raw = (PIP-Pplateau)/V
- Что и чему сопротивляется?
Респираторная механика рассматривает сопротивление дыхательных путей воздушному потоку. Сопротивление(airway resistance)зависит от длины, диаметра и проходимости дыхательныхпутей, эндотрахеальной трубки и дыхательного контура аппаратаИВЛ. Сопротивление потоку возрастает, в частности, если происходит накопление и задержка мокроты в дыхательных путях, на стенкахэндотрахеальной трубки, скопление конденсата в шлангах дыхательного контура или деформация (перегиб) любой из трубок. Сопротивление дыхательных путей растёт при всех хронических и острыхобструктивных заболеваниях лёгких, приводящих к уменьшениюдиаметра воздухоносных путей. В соответствии с законом Гагена-Пуазеля при уменьшении диаметра трубки вдвое для обеспечениятого же потока градиент давлений, создающий этот поток (нагнетаю-щее давление), должен быть увеличен в 16 раз.
Важно иметь в виду, что сопротивление всей системы определяетсязоной максимального сопротивления (самым узким местом). Устра-нение этого препятствия (например, удаление инородного тела издыхательных путей, устранение стеноза трахеи или интубация приостром отёке гортани) позволяет нормализовать условия вентиляциилегких. Термин резистанс широко используется российскими реаниматологами как существительное мужского рода. Смысл терминасоответствует мировым стандартам.Важно помнить, что:
Аппарат ИВЛ может измерить резистанс только в условияхпринудительной вентиляции у релаксированного пациента.
Когда мы говорим о резистанс(Rawили сопротивлении дыхательных путей) мы анализируем обструктивные проблемыпреимущественно связанные с состоянием проходимости дыхательных путей.
Чем больше поток, тем выше резистанс.
2. Упругость (elastance) и податливость (compliance)
Прежде всего, следует знать, это строго противоположные понятия иelastance =1/сошрЦапсе. Смысл понятия «упругость»подразумевает способность физического тела при деформации сохранять прилагаемое усилие, а при восстановлении формы - возвра-щать это усилие. Наиболее наглядно это свойство проявляется устальных пружин или резиновых изделий. Специалисты по ИВЛ принастройке и тестировании аппаратов в качестве модели легких используют резиновый мешок. Упругость дыхательной системы обозначается символомE.Размерность упругости мбар/мл, этоозначает: на сколько миллибар следует поднять давление в системе,чтобы объём увеличился на 1 мл. Данный термин широко используется в работах по физиологии дыхания, а специалисты по ИВЛ пользуются понятием обратным «упругости» - это «растяжимость»(compliance)(иногда говорят «податливость»).
Почему? - Самое простое объяснение:
На мониторах аппаратов ИВЛ выводитсяcompliance,вот мы им ипользуемся.
Термин комплайнс (compliance)используется как существи-тельное мужского рода российскими реаниматологами так же часто,как и резистанс (всегда когда монитор аппарата ИВЛ показывает этипараметры).
Размерность комплайнса - мл/мбар показывает, на сколькомиллилитров увеличивается объём при повышении давления на 1миллибар.
В реальной клинической ситуации у пациента на ИВЛ измеряют комплайнс респираторной системы - то есть легких и груднойклетки вместе. Для обозначения комплайнс используют символы:Crs (compliance respiratory system) - комплайнс дыхательной системы иCst (compliance static) - комплайнс статический, это синонимы. Для того, чтобы рассчитать статический комплайнс, аппаратИВЛ делит дыхательный объём на давление в момент инспираторнойпаузы (нет потока - нет резистанс).
Cst = VT/(Pplateau -PEEP)НормаCst (комплайнса статического) - 60-100мл/мбарПриводимая ниже схема показывает, как на основе двухкомпонент-ной модели рассчитывается сопротивление потоку(Raw),статиче-

Респираторная механика - необходимый минимум §1.2
ский комплайнс (Cst) и упругость (elastance) дыхательной системы.
Важно иметь в виду, что измерения выполняются у релакси-рованного пациента в условиях ИВЛ, управляемой по объёму с переключением на выдох по времени. Это значит, что после того, какобъём доставлен, на высоте вдоха клапаны вдоха и выдоха закрыты.В этот момент измеряется давление плато.
Важно помнить, что:
Аппарат ИВЛ может измерить Cst (комплайнс статический) только в условиях принудительной вентиляции у релак-сированного пациента во время инспираторной паузы.
Когда мы говорим о статическом комплайнсе (Cst, См илирастяжимости респираторной системы), мы анализируем ре-стриктивные проблемы преимущественно связанные с состоянием легочной паренхимы.
Философское резюме можно выразить двусмысленным утверждением:
Поток создаёт давление
Обе трактовки соответствуют действительности, то есть: во-первых, поток создаётся градиентом давлений, а во-вторых, когдапоток наталкивается на препятствие (сопротивление дыхательныхпутей), давление увеличивается. Кажущаяся речевая небрежность,когда вместо «градиент давлений» мы говорим «давление», рождается из клинической реальности: все датчики давления расположенысо стороны дыхательного контура аппарата ИВЛ. Для того, чтобы измерить давление в трахее и рассчитать градиент, необходимо остановить поток и дождаться выравнивания давления с обоих концовэндотрахеальной трубки. Поэтому в практике обычно мы пользуемсяпоказателями давления в дыхательном контуре аппарата ИВЛ.
По эту сторону эндотрахеальной трубки для обеспечениявдоха объёмом Хмл за времяYсек мы можем повышать давлениевдоха (и соответственно градиент) на сколько у нас хватит здравогосмысла и клинического опыта, поскольку возможности аппарата
ИВЛ огромны.
По ту сторону эндотрахеальной трубки у нас находится пациент, и у него для обеспечения выдоха объёмом Хмл за времяYceKесть только сила упругости легких и грудной клетки и сила его ды-хательной мускулатуры (если он не релаксирован). Возможности пациента создавать поток выдоха ограничены. Как мы ужепредупреждали, «поток - это скорость изменения объёма», поэтомудля обеспечения эффективного выдоха нужно предоставить пациенту время.
Постоянная времени (т)
Так в отечественных руководствах по физиологии дыхания называетсяTime constant.Это произведение комплайнс на резистанс.
т = Cst х Raw
вот такая формула. Размерность постоянной времени, естественносекунды. Действительно, ведь мы умножаем мл/мбар намбар/мл/сек.Постоянная времени отражает одновременно эластические свойства дыхательной системы и сопротивление дыхательныхпутей. У разных людей тразная. Понять физический смысл даннойконстанты легче, начав с выдоха. Представим себе, завершён вдох, -начат выдох. Под действием эластических сил дыхательной системывоздух выталкивается из лёгких, преодолевая сопротивление дыха-тельных путей.
Сколько времени займёт пассивный выдох?
- Постоянную времени умножить на пять (т х 5). Такустроены легкие человека. Если аппарат ИВЛ обеспечивает вдох,создавая постоянное давление в дыхательных путях, то у релаксиро-ванного пациента максимальный для данного давления дыхательныйобъём будет доставлен за то же время (т х 5).

Данный график показывает зависимость процентной величины дыхательного объёма от времени при постоянном давлениивдоха или пассивном выдохе.
При выдохе по истечении времени т пациент успевает выдохнуть 63% дыхательного объёма, за время 2т - 87%, а за время 3т -95% дыхательного объёма. При вдохе с постоянным давлением аналогичная картина.
Практическое значение постоянной времени:Если время, предоставляемое пациенту для выдоха Максимальный дыхательный объём при вдохе с постояннымдавлением поступит за время 5т.
При математическом анализе графика кривой объёма выдоха расчет
і
ГРАФИК ИЗМЕНЕНИЯ ОБЪЕМА
V
100%

т
ПОСТОЯННАЯ ВРЕМЕНИ
постоянной времени позволяет судить о комплайнс и резистанс.
Данный график показывает, как современный аппарат ИВЛрассчитывает постоянную времени.
Бывает, что статический комплайнс рассчитать невозможно,т. к. для этого должна отсутствовать спонтанная дыхательная активность и необходимо измерить давление плато. Если разделить дыхательный объём на максимальное давление, получим еще одинрасчётный показатель, отражающий комплайнс и резистанс.
Разные авторы используют разные имена, но мы должнызнать, что это синонимы:
CD= Dynamic Characteristic = Dynamic effective compliance= Dynamic compliance.CD=VT/(PIP- PEEP)
Больше всего сбивает с толку название - «динамическийкомплайнс», поскольку измерение происходит при неостановленном потоке и, следовательно, данный показатель включает и комплайнс, и резистанс. Нам больше нравится название
«динамическая характеристика».
Когда этот показатель снижается, это значит, что либо понизился комплайнс, либо возрос резистанс, либо и то и другое. (Илинарушается проходимость дыхательных путей, или снижается податливость легких.) Однако если одновременно с динамической характеристикой мы оцениваем по кривой выдохапостоянную времени,мы знаем ответ.
Если постоянная времени растёт, это обструктивный процесс,а если уменьшается, значит лёгкие стали менее податливы. (пневмония?, интерстициальный отек?...)

Повышенный интерес к мониторингу параметров механики дыхания в последнее время связан с появлением многофункциональных («интеллектуальных») респираторов и обусловлен несколькими причинами.
Во-первых , эти респираторы позволяют регистрировать и отражать в виде графиков ряд важных, недоступных для большинства прежних респираторов, биомеханических параметров, таких как скорость газового потока, эластическое сопротивление дыхательных путей (торако-пульмональный комплайнс) и других.

Во-вторых , эти вентиляторы позволяют реализовать и представить в виде графиков различные варианты потока газовой смеси, влияющие на величины давления в дыхательных путях и отражающиеся на состоянии ряда вентиляционных параметров.

В-третьих , эти респираторы позволяют реализовать различные режимы респираторной поддержки, от традиционной механической вентиляции (CMV) до целого ряда режимов вспомогательной вентиляции, таких как синхронизированная вентиляция (SIMV), вентиляция поддержкой давлением (PCV), спонтанное дыхание с постоянным положительным давлением (СРАР, BIPAP) и др. Эти режимы направлены на оптимизацию механики дыхания пациента, в частности, на максимально экономный расход энергии дыхательных мышц (работу дыхания), ибо повышенной работе дыхательных мышц неизменно сопутствует повышенный расход кислорода, запасы которого в организме крайне ограничены.

У здорового человека с нормальной биомеханикой для поддержания спокойного дыхания затраты потребляемой энергии составляют всего 2 % от всех затрат энергии для поддержания жизнедеятельности организма. При повышенной функциональной нагрузке органов дыхания (мышечная работа, возрастание метаболических процессов), а также при патологии легких (обструктивные заболевания, паренхиматозные поражения) механика дыхания претерпевает существенные изменения, что приводит к значительному возрастанию работы дыхания и увеличению потребления кислорода. Существует даже специальный термин, характеризующий этот процесс, - «кислородная стоимость или цена дыхания».

В процессе дыхательного цикла основные затраты работы дыхания направлены на преодоление механического сопротивления движению газовой смеси по . Известны девять видов механического сопротивления, которые должна преодолевать работа дыхания.

Аэродинамическое сопротивление обусловлено наличием силы трения между молекулами газовой смеси и поверхностью дыхательных путей. Аэродинамическое сопротивление увеличивается при обструктивных поражениях дыхательной системы (отек слизистой бронхов, бронхоспазм, хронические воспалительные заболевания легких и др.). Частным случаем аэродинамического сопротивления является сопротивление, не связанное непосредственно с системой органов дыхания (приложенное извне), например, сопротивление интубационной трубки или трахеотомической канюли.

Эластическое сопротивление связано с наличием эластического каркаса грудной клетки и легких, на преодоление которого необходимо затратить работу во время вдоха. Оно увеличивается при повышении жесткости дыхательной системы, например, при отеке легких, паренхиматозных поражениях (пневмония, респираторный дистресс синдром и др.). В понятии «эластическое сопротивление» объединяется еще целый ряд различных видов сопротивлений, имеющих существенно меньшее практическое значение. Это вязкостно-эластическое, пластическо-эластическое сопротивление, сопротивление, обусловленное инерционностью, гравитацией, сжатием газов при обструкции дыхательных путей, сопротивление, обусловленное деформацией дыхательных путей.

Таким образом, в практической работе из параметров, характеризующих механику дыхания, помимо традиционных параметров, таких как:
дыхательный (VT) и минутный (VE) объемы вентиляции;
давление в дыхательных путях (Р);
частота дыхания (RR);
продолжительность фаз дыхательного цикла (1:Е). Целесообразно мониторировать дополнительно еще:
скорость газового потока (у);
аэродинамическое сопротивление дыхательных путей - резистанс (R);
растяжимость системы легкое-грудная клетка - комплайнс (С).

– Какие параметры вдоха и выдоха измеряет аппарат ИВЛ?

Время (time), объём (volume), поток (flow), давление (pressure).

Время

– Что такое ВРЕМЯ?

Время – это мера длительности и последовательности явлений (на графиках давления, потока и объёма время бежит по горизонтальной оси «Х»). Измеряется в секундах, минутах, часах. (1час=60мин, 1мин=60сек)

С позиций респираторной механики нас интересует длительность вдоха и выдоха, поскольку произведение потокового времени вдоха (Inspiratory flow time) на поток равно объёму вдоха, а произведение потокового времени выдоха (Expiratory flow time) на поток равно объёму выдоха.

Временные интервалы дыхательного цикла (их четыре) Что такое «вдох – inspiration» и «выдох – expiration»?

Вдох это вход воздуха в легкие. Длится до начала выдоха. Выдох – это выход воздуха из легких. Длится до начала вдоха. Иными словами, вдох считается с момента начала поступления воздуха в дыхательные пути и длится до начала выдоха, а выдох – с момента начала изгнания воздуха из дыхательных путей и длится до начала вдоха.

Эксперты делят вдох на две части.

Inspiratory time = Inspiratory flow time + Inspiratory pause.
Inspiratory flow time – временной интервал, когда в легкие поступает воздух.

Что такое «инспираторная пауза» (inspiratory pause или inspiratory hold)? Это временной интервал, когда клапан вдоха уже закрыт, а клапан выдоха еще не открыт. Хотя в это время поступления воздуха в легкие не происходит, инспираторная пауза является частью времени вдоха. Так договорились. Инспираторная пауза возникает, когда заданный объём уже доставлен, а время вдоха ещё не истекло. Для спонтанного дыхания – это задержка дыхания на высоте вдоха. Задержка дыхания на высоте вдоха широко практикуется индийскими йогами и другими специалистами по дыхательной гимнастике.

В некоторых режимах ИВЛ инспираторная пауза отсутствует.

Для аппарата ИВЛ PPV выдох expiratory time – это временной интервал от момента открытия клапана выдоха до начала следующего вдоха. Эксперты делят выдох на две части. Expiratory time = Expiratory flow time + Expiratory pause. Expiratory flow time – временной интервал, когда воздух выходит из легких.

Что такое «экспираторная пауза» (expiratory pause или expiratory hold)? Это временной интервал, когда поток воздуха из легких уже не поступает, а вдох ещё не начался. Если мы имеем дело с «умным» аппаратом ИВЛ, мы обязаны сообщить ему сколько времени, по нашему мнению, может длиться экспираторная пауза. Если время экспираторной паузы истекло, а вдох не начался, «умный» аппарат ИВЛ объявляет тревогу (alarm) и начинает спасать пациента, поскольку считает, что произошло апноэ (apnoe). Включается опция Apnoe ventilation.

В некоторых режимах ИВЛ экспираторная пауза отсутствует.

Total cycle time – время дыхательного цикла складывается из времени вдоха и времени выдоха.

Total cycle time (Ventilatory period) = Inspiratory time + Expiratory time или Total cycle time = Inspiratory flow time + Inspiratory pause + Expiratory flow time + Expiratory pause

Этот фрагмент убедительно демонстрирует трудности перевода:

1. Expiratory pause и Inspiratory pause вообще не переводят, а просто пишут эти термины кириллицей. Мы используем буквальный перевод, – задержка вдоха и выдоха.

2. Для Inspiratory flow time и Expiratory flow time в русском языке нет удобных терминов.

3. Когда мы говорим «вдох» – приходится уточнять: – это Inspiratory time или Inspiratory flow time. Для обозначения Inspiratory flow time и Expiratory flow time мы будем использовать термины потоковое время вдоха и выдоха.

Инспираторная и/или экспираторная паузы могут отсутствовать.


Объём (volume)

– Что такое ОБЪЁМ?

Некоторые наши курсанты отвечают: «Объём – это количество вещества». Для несжимаемых (твердых и жидких) веществ это верно, а для газов не всегда.

Пример: Вам принесли баллон с кислородом, емкостью (объёмом) 3л, – а сколько в нём кислорода? Ну конечно, нужно измерить давление, и тогда, оценив степень сжатия газа и ожидаемый расход, можно сказать, надолго ли его хватит.

Механика – наука точная, поэтому прежде всего, объём – это мера пространства.


И, тем не менее, в условиях спонтанного дыхания и ИВЛ при нормальном атмосферном давлении мы используем единицы объема для оценки количества газа. Сжатием можно пренебречь.* В респираторной механике объёмы измеряют в литрах или миллилитрах.
*Когда дыхание происходит под давлением выше атмосферного (барокамера, глобоководные аквалангисты и т.д.), сжатием газов пренебрегать нельзя, поскольку меняются их физические свойства, в частности растворимость в воде. В результате – кислородное опьянение и кесонная болезнь.

В высокогорных условиях при низком атмосферном давлении здоровый спортсмен-альпинист с нормальным уровнем гемоглобина в крови испытывает гипоксию, несмотря на то, что дышит глубже и чаще (дыхательный и минутный объёмы увеличены).

Для описания объёмов используются три слова

1. Пространство (space).

2. Ёмкость (capacity).

3. Объём (volume).

Объёмы и пространства в респираторной механике.

Минутный объём (MV) – по-английски Minute volume – это сумма дыхательных объёмов за минуту. Если все дыхательные объемы в течение минуты равны, можно просто умножить дыхательный объём на частоту дыханий.

Мертвое пространство (DS) по-английски Dead* space – это суммарный объём воздухоносных путей (зона дыхательной системы, где нет газообмена).

*второе значение слова dead – бездыханный

Объемы, исследуемые при спирометрии

Дыхательный объём (VT ) по-английски Tidal volume – это величина одного обычного вдоха или выдоха.

Резервный объём вдоха – РОвд (IRV) по-английски Inspired reserve volume – это объём максимального вдоха по завершении обычного вдоха.

Ёмкость вдоха – ЕВ (IC) по-английски Inspiratory capacity – это объём максимального вдоха после обычного выдоха.

IC = TLC – FRC или IC = VT + IRV

Общая ёмкость лёгких – ОЕЛ (TLC) по-английски Total lung capacity – это объём воздуха в лёгких по завершении максимального вдоха.

Остаточный объём – ОО (RV) по-английски Residual volume – это объём воздуха в лёгких по завершении максимального выдоха.

Жизненная ёмкость лёгких – ЖЕЛ (VC) по-английски Vital capacity – это объём вдоха после максимального выдоха.

VC = TLC – RV

Функциональная остаточная ёмкость – ФОЕ (FRC) по-английски Functional residual capacity – это объём воздуха в лёгких по завершении обычного выдоха.

FRC = TLC – IC

Резервный объём выдоха – РОвыд (ERV) по-английски Expired reserve volume – это объём максимального выдоха по завершении обычного выдоха.

ERV = FRC – RV

Поток(flow)

– Что такое ПОТОК?

– «Объёмная скорость» – точное определение, удобное для оценки работы насосов и трубопроводов, но для респираторной механики больше подходит:

Поток – это скорость изменения объёма

В респираторной механике поток() измеряют в литрах в минуту.

1. Поток() = 60л/мин, Длительность вдоха(Тi) = 1сек(1/60мин),

Дыхательный объём (VT ) = ?

Решение: х Тi =VT

2. Поток() = 60л/мин, Дыхательный объём(VT ) = 1л,

Длительность вдоха(Тi) = ?

Решение: VT / = Тi

Ответ: 1сек(1/60мин)


Объём – это произведение потока на время вдоха или площадь под кривой потока.


VT = х Тi

Это представление о взаимоотношении потока и объема используется при описании режимов вентиляции.

Давление(pressure)

– Что такое ДАВЛЕНИЕ?

Давление(pressure) – это сила, приложенная к единице площади.

Давление в дыхательных путях измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар=0,9806379 см водного столба.

(Бар - внесистемная единица измерения давления, равная 105 Н/м 2 (ГОСТ 7664-61) или 106 дин/см 2 (в системе СГС).

Значения давлений в разных зонах дыхательной системы и градиенты (gradient) давления По определению давление – это сила, которая уже нашла себе применение, – она (эта сила) давит на площадь и ничего никуда не перемещает. Грамотный доктор знает, что вздох, ветер, и даже ураган, создается разностью давлений или градиентом (gradient).

Например: в баллоне газ под давлением 100 атмосфер. Ну и что, стоит себе баллон и никого не трогает. Газ в баллоне спокойно себе давит на площадь внутренней поверхности баллона и ни на что не отвлекается. А если открыть? Возникнет градиент (gradient), который и создаёт ветер.

Давления:

Paw – давление в дыхательных путях

Pbs - давление на поверхности тела

Ppl - плевральное давление

Palv- альвеолярное давление

Pes - пищеводное давление

Градиенты:

Ptr-трансреспиратонное давление: Ptr = Paw – Pbs

Ptt-трансторакальное давление: Ptt = Palv – Pbs

Pl-транспульмональное давление: Pl = Palv – Ppl

Pw-трансмуральное давление: Pw = Ppl – Pbs

(Легко запомнить: если использована приставка «транс» – речь идёт о градиенте).

Главной движущей силой, позволяющей сделать вдох, является разность давлений на входе в дыхательные пути (Pawo- pressure airway opening) и давлением в том месте, где дыхательные пути заканчиваются – то есть в альвеолах (Palv). Проблема в том, что в альвеолах технически сложно померить давление. Поэтому для оценки дыхательного усилия на спонтанном дыхании оценивают градиент между пищеводным давлением (Pes), при соблюдении условий измерения оно равно плевральному(Ppl), и давлением на входе в дыхательные пути (Pawo).

При управлении аппаратом ИВЛ наиболее доступным и информативным является градиент между давлением в дыхательных путях (Paw) и давлением на поверхности тела (Pbs- pressure body surface). Этот градиент (Ptr) называется «трансреспиратораное давление», и вот как он создаётся:

Как видите, ни один из методов ИВЛ не соответствует полностью спонтанному дыханию, но если оценивать воздействие на венозный возврат и лимфоотток аппараты ИВЛ NPV типа «Kirassa» кажутся более физиологичными. Аппараты ИВЛ NPV типа «Iron lung», создавая отрицательное давление над всей поверхностью тела, снижают венозный возврат и, соответственно, сердечный выброс.

Без Ньютона здесь не обойтись.

Давление (pressure) – это сила, с которой ткани лёгких и грудной клетки противодействуют вводимому объёму, или, иными словами, сила, с которой аппарат ИВЛ преодолевает сопротивление дыхательных путей, эластическую тягу лёгких и мышечно-связочных структур грудной клетки (по третьему закону Ньютона это одно и то же поскольку «сила действия равна силе противодействия»).

Equation of Motion уравнение сил, или третий закон Ньютона для системы «аппарат ИВЛ – пациент»

В том случае, если аппарат ИВЛ осуществляет вдох синхронно с дыхательной попыткой пациента, давление, создаваемое аппаратом ИВЛ (Pvent), суммируется с мышечным усилием пациента (Pmus) (левая часть уравнения) для преодоления упругости легких и грудной клетки (elastance) и сопротивления (resistance) потоку воздуха в дыхательных путях (правая часть уравнения).

Pmus + Pvent = Pelastic + Presistive

(давление измеряют в миллибарах)

(произведение упругости на объём)

Presistive = R x

(произведение сопротивления на поток) соответственно

Pmus + Pvent = E x V + R x

Pmus(мбар) + Pvent(мбар) = E(мбар/мл) x V(мл) + R (мбар/л/мин) x (л/мин)

Заодно вспомним, размерность E - elastance (упругость) показывает на сколько миллибар возрастает давление в резервуаре на вводимую единицу объёма (мбар/мл); R - resistance сопротивление потоку воздуха проходящему через дыхательные пути (мбар/л/мин).

Ну и для чего нам пригодится это Equation of Motion (уравнение сил)?

Понимание уравнения сил позволяет нам делать три вещи:

Во-первых, любой аппарат ИВЛ PPV может управлять одномоментно только одним из изменяемых параметров входящих в это уравнение. Эти изменяемые параметры – давление объём и поток. Поэтому существуют три способа управления вдохом: pressure control, volume control, или flow control. Реализация варианта вдоха зависит от конструкции аппарата ИВЛ и выбранного режима ИВЛ.

Во-вторых, на основе уравнения сил созданы интеллектуальные программы, благодаря которым аппарат рассчитывает показатели респираторной механики (напр.: compliance (растяжимость), resistance (сопротивление) и time constant (постоянная времени «τ »).

В-третьих, без понимания уравнения сил не понять такие режимы вентиляции как “proportional assist”, “automatic tube compensation”, и “adaptive support”.

Главные расчетные параметры респираторной механики resistance, elastance, compliance

1. Сопротивление дыхательных путей (airway resistance)

Сокращенное обозначение – Raw. Размерность – смH 2 O/Л/сек или мбар/мл/сек Норма для здорового человека – 0,6-2,4 смH 2 O/Л/сек. Физический смысл данного показателя говорит, каким должен быть градиент давлений (нагнетающее давление) в данной системе, чтобы обеспечить поток 1 литр в секунду. Современному аппарату ИВЛ несложно рассчитать резистанс (airway resistance), у него есть датчики давления и потока – разделил давление на поток, и готов результат. Для расчета резистанс аппарат ИВЛ делит разность (градиент) максимального давления вдоха (PIP) и давления плато вдоха (Pplateau) на поток ().
Raw = (PIP–Pplateau)/.
Что и чему сопротивляется?

Респираторная механика рассматривает сопротивление дыхательных путей воздушному потоку. Сопротивление (airway resistance) зависит от длины, диаметра и проходимости дыхательных путей, эндотрахеальной трубки и дыхательного контура аппарата ИВЛ. Сопротивление потоку возрастает, в частности, если происходит накопление и задержка мокроты в дыхательных путях, на стенках эндотрахеальной трубки, скопление конденсата в шлангах дыхательного контура или деформация (перегиб) любой из трубок. Сопротивление дыхательных путей растёт при всех хронических и острых обструктивных заболеваниях лёгких, приводящих к уменьшению диаметра воздухоносных путей. В соответствии с законом Гагена-Пуазеля при уменьшении диаметра трубки вдвое для обеспечения того же потока градиент давлений, создающий этот поток (нагнетающее давление), должен быть увеличен в 16 раз.

Важно иметь в виду, что сопротивление всей системы определяется зоной максимального сопротивления (самым узким местом). Устранение этого препятствия (например, удаление инородного тела из дыхательных путей, устранение стеноза трахеи или интубация при остром отёке гортани) позволяет нормализовать условия вентиляции легких. Термин резистанс широко используется российскими реаниматологами как существительное мужского рода. Смысл термина соответствует мировым стандартам.

Важно помнить, что:

1. Аппарат ИВЛ может измерить резистанс только в условиях принудительной вентиляции у релаксированного пациента.

2. Когда мы говорим о резистанс (Raw или сопротивлении дыхательных путей) мы анализируем обструктивные проблемы преимущественно связанные с состоянием проходимости дыхательных путей.

3. Чем больше поток, тем выше резистанс.

2. Упругость (elastance) и податливость (compliance)

Прежде всего, следует знать, это строго противоположные понятия и elastance =1/сompliance. Смысл понятия «упругость» подразумевает способность физического тела при деформации сохранять прилагаемое усилие, а при восстановлении формы – возвращать это усилие. Наиболее наглядно это свойство проявляется у стальных пружин или резиновых изделий. Специалисты по ИВЛ при настройке и тестировании аппаратов в качестве модели легких используют резиновый мешок. Упругость дыхательной системы обозначается символом E. Размерность упругости мбар/мл, это означает: на сколько миллибар следует поднять давление в системе, чтобы объём увеличился на 1 мл. Данный термин широко используется в работах по физиологии дыхания, а специалисты по ИВЛ пользуются понятием обратным «упругости» – это «растяжимость» (compliance) (иногда говорят «податливость»).

– Почему? – Самое простое объяснение:

– На мониторах аппаратов ИВЛ выводится compliance, вот мы им и пользуемся.

Термин комплайнс (compliance) используется как существительное мужского рода российскими реаниматологами так же часто, как и резистанс (всегда когда монитор аппарата ИВЛ показывает эти параметры).

Размерность комплайнса – мл/мбар показывает, на сколько миллилитров увеличивается объём при повышении давления на 1 миллибар. В реальной клинической ситуации у пациента на ИВЛ измеряют комплайнс респираторной системы – то есть легких и грудной клетки вместе. Для обозначения комплайнс используют символы: Crs (compliance respiratory system) – комплайнс дыхательной системы и Cst (compliance static) – комплайнс статический, это синонимы. Для того, чтобы рассчитать статический комплайнс, аппарат ИВЛ делит дыхательный объём на давление в момент инспираторной паузы (нет потока – нет резистанс).

Cst = V T /(Pplateau –PEEP)

Норма Cst (комплайнса статического) – 60-100мл/мбар

Приводимая ниже схема показывает, как на основе двухкомпонентной модели рассчитывается сопротивление потоку (Raw), статический комплайнс (Cst) и упругость (elastance) дыхательной системы.


Измерения выполняются у релаксированного пациента в условиях ИВЛ, управляемой по объёму с переключением на выдох по времени. Это значит, что после того, как объём доставлен, на высоте вдоха клапаны вдоха и выдоха закрыты. В этот момент измеряется давление плато.

Важно помнить, что:

1. Аппарат ИВЛ может измерить Cst (комплайнс статический) только в условиях принудительной вентиляции у релаксированного пациента во время инспираторной паузы.

2. Когда мы говорим о статическом комплайнсе (Cst, Crs или растяжимости респираторной системы), мы анализируем рестриктивные проблемы преимущественно связанные с состоянием легочной паренхимы.

Философское резюме можно выразить двусмысленным утверждением: Поток создаёт давление.

Обе трактовки соответствуют действительности, то есть: во-первых, поток создаётся градиентом давлений, а во-вторых, когда поток наталкивается на препятствие (сопротивление дыхательных путей), давление увеличивается. Кажущаяся речевая небрежность, когда вместо «градиент давлений» мы говорим «давление», рождается из клинической реальности: все датчики давления расположены со стороны дыхательного контура аппарата ИВЛ. Для того, чтобы измерить давление в трахее и рассчитать градиент, необходимо остановить поток и дождаться выравнивания давления с обоих концов эндотрахеальной трубки. Поэтому в практике обычно мы пользуемся показателями давления в дыхательном контуре аппарата ИВЛ.

По эту сторону эндотрахеальной трубки для обеспечения вдоха объёмом Хмл за время Yсек мы можем повышать давление вдоха (и соответственно градиент) на сколько у нас хватит здравого смысла и клинического опыта, поскольку возможности аппарата ИВЛ огромны.

По ту сторону эндотрахеальной трубки у нас находится пациент, и у него для обеспечения выдоха объёмом Хмл за время Yсек есть только сила упругости легких и грудной клетки и сила его дыхательной мускулатуры (если он не релаксирован). Возможности пациента создавать поток выдоха ограничены. Как мы уже предупреждали, «поток – это скорость изменения объёма», поэтому для обеспечения эффективного выдоха нужно предоставить пациенту время.

Постоянная времени (τ )

Так в отечественных руководствах по физиологии дыхания называется Time constant. Это произведение комплайнс на резистанс. τ = Cst х Raw вот такая формула. Размерность постоянной времени, естественно секунды. Действительно, ведь мы умножаем мл/мбар на мбар/мл/сек. Постоянная времени отражает одновременно эластические свойства дыхательной системы и сопротивление дыхательных путей. У разных людей τ разная. Понять физический смысл данной константы легче, начав с выдоха. Представим себе, завершён вдох, – начат выдох. Под действием эластических сил дыхательной системы воздух выталкивается из лёгких, преодолевая сопротивление дыхательных путей. Сколько времени займёт пассивный выдох? – Постоянную времени умножить на пять (τ х 5). Так устроены легкие человека. Если аппарат ИВЛ обеспечивает вдох, создавая постоянное давление в дыхательных путях, то у релаксированного пациента максимальный для данного давления дыхательный объём будет доставлен за то же время (τ х 5).

Данный график показывает зависимость процентной величины дыхательного объёма от времени при постоянном давлении вдоха или пассивном выдохе.


При выдохе по истечении времени τ пациент успевает выдохнуть 63% дыхательного объёма, за время 2τ – 87%, а за время 3τ – 95% дыхательного объёма. При вдохе с постоянным давлением аналогичная картина.

Практическое значение постоянной времени:

Если время, предоставляемое пациенту для выдоха <5τ , то после каждого вдоха часть дыхательного объёма будет задерживаться в легких пациента.

Максимальный дыхательный объём при вдохе с постоянным давлением поступит за время 5τ .

При математическом анализе графика кривой объёма выдоха расчет постоянной времени позволяет судить о комплайнс и резистанс.

Данный график показывает, как современный аппарат ИВЛ рассчитывает постоянную времени.


Бывает, что статический комплайнс рассчитать невозможно, т. к. для этого должна отсутствовать спонтанная дыхательная активность и необходимо измерить давление плато. Если разделить дыхательный объём на максимальное давление, получим еще один расчётный показатель, отражающий комплайнс и резистанс.

CD = Dynamic Characteristic = Dynamic effective compliance = Dynamic compliance.

CD = VT /(PIP – PEEP)

Больше всего сбивает с толку название – «динамический комплайнс», поскольку измерение происходит при неостановленном потоке и, следовательно, данный показатель включает и комплайнс, и резистанс. Нам больше нравится название «динамическая характеристика». Когда этот показатель снижается, это значит, что либо понизился комплайнс, либо возрос резистанс, либо и то и другое. (Или нарушается проходимость дыхательных путей, или снижается податливость легких.) Однако если одновременно с динамической характеристикой мы оцениваем по кривой выдоха постоянную времени, мы знаем ответ.

Если постоянная времени растёт, это обструктивный процесс, а если уменьшается, значит лёгкие стали менее податливы. (пневмония?, интерстициальный отек?...)


МЕХАНИКА ДЫХАНИЯ

Сопротивление дыхательных путей

Движение воздуха в дыхательных путях и смещение ткани легких требует затраты механической энергии.

Дыхательные пути имеют вид сложной асимметрично делящейся системы, состоящей из многочисленных бифуркаций и ветвей разного калибра. В такой системе типичным является сочетание ламинарного и турбулентного потоков воздуха. Возникающее сопротивление току воздуха приводит к снижению давления по ходу воздухоносных путей. Как известно, это давление обеспечивает движение воздуха в воздухоносных путях легких.

Вязкое сопротивление дыхательных путей нередко называется легочным резистансом (resistance, R). Этот показатель рас­считывают по формуле: R=ΔР/V

Сопротивление легких включает в себя сопротивление ткани легких и дыхательных путей. В свою очередь сопротивление дыха­тельных путей подразделяют на сопротивление верхних (полость рта, носовые ходы, глотка), нижних (трахея, главные бронхи) и мелких (меньше 2 мм в диаметре) дыхательных путей. При этом сопротивление дыхательных путей обратно пропорционально диа­метру их просвета. Следовательно, мелкие дыхательные пути со­здают наибольшее сопротивление потоку воздуха в легких. Кроме того, на этот показатель влияют вязкость и плотность газа.

Сопротивление дыхательных путей очень чувствительно к фак­торам, которые влияют на диаметр дыхательных путей. Такими факторами являются легочный объем, тонус бронхиальных мышц, секреция слизи и спадение дыхательных путей во время выдоха или их сдавление каким-либо объемным процессом в легких (на­пример, опухолью).

Работа дыхания

Работа дыхания (W) - показатель, с помощью которого оценивают работу дыхательных мышц. Поскольку во время вдоха и выдоха затрачивается энергия мышц по преодолению упругих и вязких сопротивлений, то работу дыхания можно рассчитать как произведение давления в легких на их объем (W=P*V). Работу дыхания измеряют путем непрерывной регистрации внутриплев-рального или внутрипищеводного давления (Р) и сопутствующих ему изменений объема легких (V). При этом регистрируется диаг­рамма давление - объем в виде так называемой «дыхательной петли», площадь которой равна величине работы дыхания (рис. 8.5). Изменение внутриплеврального давления во время вдоха отражает кривая ОБГ. При этом совершается работа, равная площади ОБГДО. Работа по преодолению эластического сопротивления выражается площадью ОАГДО, а вязкого - площадью ОБГАО. При увеличении легочного сопротивления и объемной скорости движения воздуха в легких внутриплевральное давление становится более отрицатель­ным. При этом точка Б будет смещаться вправо к точке В и далее.

Работу по преодолению сопротивления дыхательных путей и тканей легких на выдохе отражает площадь ОАГЕО. Поскольку эта площадь вписана в площадь работы дыхания на вдохе, то в экспи­рацию работа дыхания по преодолению вязких сил совершается за счет энергии, запасенной в эластических структурах системы ды­хания во время предшествующего вдоха.

Энергия сокращения дыхательных мышц на вдохе затрачивается на преодоление эластической тяги легких и сопротивления воздуш­ному потоку со стороны воздухопроводящих путей, а также на преодоление сопротивления мышечным усилиям со стороны пере­мещаемых тканей легких и грудной клетки.

На фоне частого дыхания возрастает работа по преодолению вязких сил (площадь ОБГАО), а при глубоком дыхании возрастает работа по преодолению эластического сопротивления (площадь ОАГДО).

В среднем при минутном объеме дыхания 10 л*мин-1 работа дыхания составляет 0,2-0,3 кгм*мин-1, а при 40 л*мин-1 - 2-4 кгм*мин-1. При максимальной физической работе дыхатель­ные мышцы могут потреблять до 20% от общего объема погло­щенного кислорода. Считают, что потребление такого значитель­ного количества О2 дыхательными мышцами ограничивает предел выполняемой человеком физической нагрузки.



 

Возможно, будет полезно почитать: