В чем измеряется сила мышц.  Сила мышц. Место прикрепления мышц

Мышечная сила

Под силой понимается способность человека преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилий. Один из наиболее существенных моментов, определяющих мышечную силу - это режим работы мышц. При существовании лишь двух реакций мышц на раздражение - сокращения с уменьшением длины и изометрического напряжения, результаты проявленного усилия оказываются различными в зависимости от того, в каком режиме мышцы работают. В процессе выполнения спортивных или профессиональных приемов и действий человек может поднимать, опускать или удерживать тяжелые грузы.

Мышцы, обеспечивающие эти движения, работают в различных режимах. Если, преодолевая какое-либо сопротивление, мышцы сокращаются и укорачиваются, то такая их работа называется преодолевающей (концентрической). Мышцы, противодействующие какому-либо сопротивлению, могут при напряжении, и удлиняться, например, удерживая очень тяжелый груз. В таком случае их работа называется уступающей (эксцентрической). Преодолевающий и уступающий режимы работы мышц объединяются названием динамического.

Сокращение мышцы при постоянном напряжении или внешней нагрузке называется изотоническим. При изотоническом сокращении мышцы, от предъявляемой нагрузки зависит не только величина ее укорочения, но и скорость: чем меньше нагрузка, тем больше скорость ее укорочения. Данный режим работы мышц имеет место в силовых упражнениях с преодолением внешнего отягощения (штанги, гантелей, гирь, отягощения на блочном устройстве). Величина прикладываемой к снаряду силы при выполнении упражнения в изотоническом режиме изменяется по ходу траектории движений, так как изменяются рычаги приложения силы в различных фазах движений. Упражнения со штангой или другим аналогичным снарядом с высокой скоростью не дают необходимого эффекта, так как предельные мышечные усилия в начале рабочих движений придают снаряду ускорение, а дальнейшая работа по ходу движения в значительной мере выполняется по инерции. Поэтому, упражнения со штангой и подобными снарядами малопригодны для развития скоростной (динамической) силы. Упражнения с этими снарядами применяются в основном для развития максимальной силы и наращивания мышечной массы, выполняются равномерно в медленном и среднем темпе. Однако, указанные недостатки силовых упражнений со штангой, гантелями, гирями и т. п. с лихвой компенсируются простотой, доступностью и разнообразием упражнений. мышечный штанга сила

В последние годы в мировой практике разработаны и широко применяются тренажеры специальных конструкций, при работе на которых задается не величина отягощения, а скорость перемещения звеньев тела. Такие тренажеры позволяют выполнять движения в очень широком диапазоне скоростей, проявлять максимальные и близкие к ним усилия практически на любом участке траектории движения. Режим работы мышц на тренажерах такого типа называется изокинетическим. При этом мышцы имеют возможность работы с оптимальной нагрузкой по ходу всей траектории движения. Изокинетические тренажеры широко применяются пловцами, а также в общефизической подготовке. Многие специалисты высказывают мнение о том, что силовые упражнения на тренажерах с данным режимом работы мышц должны стать основным средством силовой подготовки при развитии максимальной и "взрывной" силы. Выполнение силовых упражнений с высокой угловой скоростью движений более эффективно, по сравнению с традиционными средствами, при решении задач развития силы без значительного прироста мышечной массы, необходимости снижения количества жира, для развития скоростно-силовых качеств.

В подготовке спортсменов и в атлетических клубах широкое распространение получили также тренажеры типа "Наутилиус" с изменяющимся по ходу движения (переменным) сопротивлением. Такой эффект достигается применением в их конструкции эксцентриков и рычагов. Тренажеры этого типа в значительной мере компенсируют недостатки силовых упражнений с изотоническим режимом работы мышц, изменяя за счет конструктивных особенностей динамику мышечной тяги. Преимущество этих тренажеров заключается в том, что они позволяют регламентировать выполнение упражнений с большой амплитудой, максимально напрягать мышцы в уступающей фазе движений, совмещать развитие силы и гибкости мышц. Недостатками их являются сложность в изготовлении и громоздкость, возможность выполнения на одном тренажере только одного упражнения. Переменный режим работы мышц имеет место также и при использовании силовых упражнений с амортизаторами и эспандерами.

Выполняя движения, человек очень часто проявляет силу и без изменения длины мышц. Такой режим их работы называется изометрическим, или статическим, при котором мышцы проявляют свою максимальную силу. В целом для организма изометрический режим оказывается самым неблагоприятным в связи с тем, что возбуждение нервных центров, испытывающих очень высокую нагрузку, быстро сменяется тормозным охранительным процессом, а напряженные мышцы, сдавливая сосуды, препятствуют нормальному кровоснабжению, и работоспособность быстро падает. При насильственном увеличении длины мышц в уступающих движениях сила может значительно (до 50-100%) превосходить максимальную изометрическую силу человека. Это может проявляться, например, во время приземления с относительно большой высоты, в амортизационной фазе отталкивания в прыжках, в быстрых движениях, когда необходимо погасить кинетическую энергию движущегося звена тела и т. д. Сила, развиваемая в уступающем режиме работы в разных движениях, зависит от скорости; чем больше скорость, тем больше и сила.

Меньшую силу, чем в статическом и уступающем режимах, мышцы генерируют, сокращаясь в преодолевающем режиме<. Между силой и скоростью сокращения существует обратно пропорциональная зависимость. Важным является и то, что возможные значения силы и скорости при различных отягощениях зависят от величины максимальной силы, проявляемой в изометрических условиях. Ненагруженная мышца (без всяких отягощений и сопротивлений) укорачивается с максимальной скоростью.

Если постепенно наращивать величину отягощения (или сопротивления), то сначала с увеличением этого отягощения (т. е. перемещаемой массы тела) сила до определенного момента возрастает. Однако, попытки дальнейшего повышения отягощения силу не увеличивают. Например, сила, прикладываемая к теннисному мячу при его метании, будет существенно меньше, чем при метании металлического ядра весом 1-2 килограмма. Если же массу метаемого с ускорением снаряда постепенно повышать и далее, то наступает предел, выше которого развиваемая человеком сила уже не будет зависеть от величины перемещаемой им массы, а будет определяться лишь его собственно силовыми возможностями, то есть уровнем максимальной изометрической силы.

Понимание этой темы позволит вам регулярно повышать рабочие веса в абсолютно любом упражнении, избегая так называемого «плато». Если вы грезите большими мышечными объемами, обязательно прочитайте нижеприведенную информацию.

Бытует мнение, согласно которому сила мышцы напрямую зависит от её объёма, то есть чем больше мышечная группа, тем большую силу она может развить. Данное высказывание верно лишь отчасти. Постараемся объяснить почему.

Влияние нервной системы
Прежде всего, необходимо вспомнить базовый курс физиологии. Скелетные мышцы человека обладают удивительным свойством - они могут работать не всей массой, а лишь определенными частями. Грубо говоря, именно этот факт позволяет нам регулировать силу.

Управление сократительной активностью мышц происходит с помощью мотонейронов – особых клеток нервного типа, которые находятся в спинном мозге. Именно отсюда по специальным каналам (аксонам) в каждую мышцу посылается сигнал той или иной мощности. В то же время ветки аксона непосредственно возле мышечной группы разветвляются на огромное количество канальцев, каждый из которых подведен к отдельной мышечной клетке – симпласту.

Чем сильнее сигнал поступает от мотонейронов, тем большее количество мышечных волокон включается в работу. Именно так мы регулируем силу и скорость мышечного сокращения, однако показатель максимальной силы зависит совсем от других факторов.

Тетанус
Для того чтобы продолжить, необходимо ввести термин тетанус – это состояние длительного непрерывного сокращения. Данный процесс наблюдается при подъеме рабочего веса (позитивное движение), при опускании (негативное движение) и при статическом удержании.

Сила тетануса зависит от характера и скорости сокращения мышц. Следует помнить: чем быстрее сокращается мышца, тем меньшую силу она может создать . Следовательно, максимальная скорость сокращения мышечного волокна наблюдается при отсутствии внешней нагрузки. В то же время максимальная сила развивается при негативном движении, например в опускании штанги при жиме лежа.

Влияние типов мышечных волокон Как уже говорилось выше, сокращение мышцы начинается с сигнала ЦНС, который поступает в мотонейрон, а оттуда по аксонам к мышцам. Силу сигнала контролирует человеческий мозг, и чем сильнее воздействие на мотонейрон, тем выше частота импульса поступающего по аксонам.

Для ходьбы, как правило, достаточно 4-5 Гц, однако максимальная частота может превышать 50 Гц. В спинном мозге существуют мотонейроны как быстрого, так и медленного типа. Первые могут создавать высокочастотный импульс, который вызовет гораздо большую силу, нежели частоты медленных мотонейронов. Интересным фактом является то, что все быстрые мотонейроны подключены к быстрым мышечным волокнам (белым), а медленные в свою очередь к одноименным (красным).

Сила мышечной группы так же зависит от самой банальной характеристики – количества активных в данный момент волокон. Люди, у которых количество быстрых (белых) мышечных волокон преобладает, могут похвастаться большей силой, так как за единицу времени могут задействовать большее число мышечных клеток.

Люди с преимущественно красными (медленными) волокнами не выделяются силовыми результатами, зато они сильнее предрасположены к совершению длительной работы с умеренной нагрузкой.

Защитные механизмы
Нельзя не отметить существование целой защитной системы под названием органы Гольджи, которые находятся непосредственно в сухожилиях. Они играют роль «сканеров», которые проверяют каждый сигнал, посланный из ЦНС.

При регистрации слишком сильного напряжения, потенциально опасного для костей и суставов, органы Гольджи оказывают угнетающее и тормозящее действие на все активные мотонейроны. В итоге по аксонам идет заниженный сигнал, что в свою очередь заметно ослабляет ту или иную мышечную группу. К сожалению, зачастую данный процесс начинается задолго до реальной опасности. Организм лишний раз подстраховывается, вследствие чего органы Гольджи работают «с запасом».

Однако не все так плохо, ведь данная характеристика тренируется. Регулярные субмаксимальные нагрузки способствуют повышению порога возбудимости органов Гольджи. Кроме того стоит учесть, что некоторые люди от рождения обладают хорошо развитой сухожильной системой, вследствие чего проявляется так называемая сверхсила.

Влияние мышечного энергообмена
Еще одним важным фактором, влияющим на силу мышечной группы, является режим , в котором выполняетсся то или иное упражнение.

Естественно каждый читатель знает о том, что максимальный рабочий вес, то есть сила, зависит и от количества времени под нагрузкой (количества повторений).

В рамках данной темы достаточно отметить, что исходный уровень АТФ и КрФ заметно влияет на возможный рабочий вес отягощения в любом упражнении. Однако стоит помнить, что у некоторых людей, и в частности спортсменов со стажем, уровень энергетических ресурсов достаточно высок, и прием креатиновых добавок в этом случае не поспособствует заметному увеличению силы. В то же время, новичок с заведомо низким уровнем КрФ и АТФ может получить невероятный скачок в силе, за счет банального употребления креатина.

В случае с 8-12 повторениями, ключевую роль играет не количество фосфатов, а каскад других характеристик, таких как: способность сопротивляться лактату (молочной кислоте), количество гликогена мышц, частота мотонейронных сигналов и других. Также стоит отметить, важность активности фермента АТФазы , который расщепляет АТФ и дарит нам энергию.

Данная характеристика всецело зависит от кислотности среды. Так, в нейтральной среде (pH=7) данный фермент показывает отличную работоспособность, но как только в мышечной группе начнут появляться кислые продукты метаболизма, активность АТФазы начнет спадать к нулю. Если в диапазоне повторений 1-6 лактата нет, то при 8-12 рабочих движениях, молочная кислота непременно понизит ваши силовые характеристики.

Практические выводы
Резюмируем всё вышесказанное. Итак, сила мышц зависит от следующих факторов:

  • Силы и частоты сигналов ЦНС и мотонейронов соответственно;
  • Количества мышечных волокон, в частности быстрого (белого) типа;
  • Высокого порога возбудимости органов Гольджи, то есть от крепости связок и суставов;
  • Количества гликогена, АТФ, КрФ или способности противостоять лактату, при том или ином количестве повторений.

Теперь, зная какие факторы влияют на силу мышц, вы можете развивать каждую отдельную характеристику, будь то нервная система или количество КрФ.

Выбор тренировочной цели зависит от того, какую силу вы развиваете: на 1-6 повторений или на 8-12. Необходимо помнить, что у любой характеристики есть свой предел развития. Если вы столкнулись с застоем, попробуйте сменить тренировочную цель. Как правило, достаточно поменять количество повторений.

Стоит отметить, что любая тренировка и развитие силы в целом, увеличивает количество мышечных волокон и объем мускулатуры. Именно поэтому все представители силовых видов спорта обладают хорошим телосложением.

Сила мышцы может быть определена как максимальное напряжению, которое она развивает в условиях изометрического сокращения.

Измерение мышечной силы у человека осуществляется при произвольном напряжении мышц (например, динамометрия). Поэтому когда говорят о мышечной силе человека, практически всегда речь идет о максимальной произвольной мышечной силе , т. е. о суммарной величине изометрического напряжения (точнее - о суммарном моменте) группы мышц при максимальном произвольном усилии испытуемого. Максимальная произвольная мышечная сила зависит от двух групп факторов, которые можно обозначить как мышечные (периферические) факторы и координационные (нервные) факторы.

К мышечным (периферическим) факторам относятся:

· механические условия действия мышечной тяги – плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

Этот фактор менее всего зависит от желаний или возможностей человека, его анатомические особенности определены геномом, а условия, при которых следует развить максимальную силу, специально создаются разве что на соревнованиях. Однако если ничего не мешает, человек или другой организм будет стремиться занять наиболее выгодное (удобное) положение для получения максимального результата движения (прыжка, удара, толчка и т.д.).

· поперечник активируемых мышц , так как при прочих равных условиях проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц.

Это, пожалуй, самый широко обсуждаемый фактор, и чаще всего естественно и искусственно изменяемый фактор. Действительно, максимальная сила мышцы зависит от числа мышечных волокон, составляющих данную мышцу, и от толщины этих волокон. Число и толщина их определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в кг/см 2 . Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине, а именно перпендикулярно ходу волокон, что важно учитывать при расчете относительной силы для мышц с косым расположением волокон.

Поперечный разрез мышцы, перпендикулярный ходу ее волокон, позволяет получить физиологический поперечник мышцы . Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим, Отношение максимальной силы мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы . Она колеблется в пределах 4 - 8 кг/см 2 .

Поскольку сила мышцы зависит от ее поперечника, увеличение последнего сопровождается ростом силы данной мышцы. Увеличение мышечного поперечника в результате мышечной тренировки называется рабочей гипертрофией мышцы. Мышечные волокна, являющиеся высокоспециализированными дифференцированными клетками не способны к делению с образованием новых волокон. Рабочая гипертрофия мышцы происходит отчасти за счет продольного расщепления, а главным образом за счет утолщения (увеличения объема) мышечных волокон.


Можно выделить два основных типа рабочей гипертрофии мышечных волокон. Первый тип (саркоплазматический) – утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. несократительной части мышечных волокон. Этот тип гипертрофии приводит к повышению метаболических резервов мышцы: запасов гликогена, безазотистых веществ, креатинфосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может в какой-то мере вызывать некоторое утолщение мышцы.

Первый тип рабочей гипертрофии мало влияет на рост силы мышц, но зато значительно повышает способность их к продолжительной работе, т. е. выносливость.

Второй тип рабочей гипертрофии (миофибриллярный) связан с увеличением объема миофибрилл, т. е. собственно сократительного аппарата мышечных волокон. При этом мышечный поперечник может увеличиваться не очень значительно, так как в основном возрастает плотность укладки миофибрилл в мышечном волокне. Второй тип рабочей гипертрофии ведет к значительному росту максимальной силы мышцы. Существенно увеличивается и абсолютная сила мышцы, тогда как при первом типе рабочей гипертрофии она или совсем не изменяется или даже несколько уменьшается.

Преимущественное развитие первого или второго типа рабочей гипертрофии определяется характером мышечной тренировки. Вероятно, длительные динамические упражнения с относительно небольшой нагрузкой вызывают рабочую гипертрофию главным образом первого типа (преимущественное увеличение объема саркоплазмы, а не миофибрилл). Изометрические упражнения с применением больших мышечных напряжений (более 2/3 от максимальной произвольной силы тренируемых мышечных групп), наоборот, способствуют развитию рабочей гипертрофии второго типа (миофибриллярной гипертрофии).

· исходная длина мышц , при которой начинается её сокращение;

Для развития максимальной силы мышца перед началом сокращения должна быть в состоянии длины покоя, то есть максимально расслаблена, но не растянута (Рис.2.А). Этот фактор специально учитывают спортсмены в тех видах спорта, где необходим высокий силовой результат. Например, тяжелоатлеты непосредственно перед поднятием штанги пытаются максимально расслабить мышцы, интенсивно встряхивая верхними и нижними конечностями.

Действительно, сточки зрения теории скользящих нитей (см. предыдущее занятие) при сокращении тонкие нити протягиваются (скользят) вдоль толстых. Усилие, которое при этом развивается, будет определяться исходной степенью перекрывания толстых и тонких нитей в саркомере.

Если исходная длина мышцы больше длины покоя (мышца исходно растянута) степень перекрывания головок миозина с нитями актина уменьшается (Рис. 2Б). Другими словами часть головок миозина еще в покое не контактирует с актином, а значит и не участвует в сокращении. Усилие, развиваемое сокращающейся мышцей, при этом снижается.

Если исходная длина мышцы меньше длины покоя (мышца исходно сокращена, а значит укорочена), то расстояние на которое саркомер, а следовательно и мышца может укоротиться при сокращении уменьшается (Рис. 2В).

Многие из нас наверняка задумывались над тем, от каких факторов зависит физическая сила. Ведь не всегда человек с большими мышцами сильнее человека более скромной комплекции. Существует несколько факторов, которые непосредственно влияют на силу человека.

Типы мышечных волокон. Многое зависит от преобладающего типа мышечных волокон. Их существует два вида: быстрые и медленные. Быстро сокращающиеся волокна способны создавать большое количество энергии за короткие промежутки времени. То есть, отвечают именно за взрывную силу, когда требуется максимальное мышечное усилие. Медленно сокращающиеся волокна издают небольшое количество энергии, но уже на длительные промежутки времени. То есть отвечают за силовую выносливость. Изначально у большинства из нас количество медленных и быстрых волокон практически одинаково. Хотя бывает, что преобладает, какой-то один тип. В результате разного рода тренировок развиваются те или другие мышечные волокна. Тут все просто – малое число повторов с максимально допустимым весом тренирует быстрые волокно, то есть силу. Большое число повторов с небольшим весом тренирует медленные волокна, то есть выносливость.

Возраст. Возраст, конечно же, влияет на нашу способность к тренировкам мышц, а соответственно на развитие силы. По данным исследователей прибавку к силе можно получить практически в любом возрасте, регулярно занимаясь спортом. Но самого быстрого результата добиться можно в промежутке 15-25 лет, так как в данном возрастном промежутке организм активно растет и развивается.

Пол. Строение мужских и женских мышц одинаковое, но из-за наличия гормона тестостерона мышцы у мужчин больше и сильнее.

Длина конечностей и мышц. Людям с короткими конечностями изначально легче поднимать большие веса из-за более короткого, удобного рычага. Еще играет роль длина самой мышцы. Чем она длиннее, тем потенциал для ее развития больше.

Место прикрепления сухожилия. От сухожилий также во многом зависит физическая сила. Имеют значение размеры, а также место крепления сухожилий. К примеру, у двух спортсменов одинакового телосложения при подъеме штанги на бицепс преимущество буде у того, у кого связки прикреплены дальше от локтя. Это дает биомеханическое преимущество.

Генетика. От генетики, несомненно, зависит наше телосложение, размер костей и потенциал роста мышечной массы, изначальная сила. Но правильными, регулярными тренировками можно добиться хорошего результата даже с самой плохой генетической одаренностью. И этому есть много примеров.

И напоследок стоит отметить, что развитая физическая сила помогает человеку во многих жизненных обстоятельствах, придает уверенность в себе, повышает самооценку.

физическая сила

БЫСТРЫЕ И МЕДЛЕННЫЕ МЫШЕЧНЫЕ ВОЛОКНА

Мышцы человека состоят из мышечных волокон, которые, в свою очередь, делятся на два принципиально отличающихся типа: быстрые и медленные. Отличия выражаются не только в скорости вовлечения мышц и используемом для их работы источнике энергии, но даже и в цвете волокна.

8 главных факторов, от которых зависит сила мышц

Медленные (красные) волокна, ответственные за продолжительные монотонные нагрузки, используют в качестве основного источника энергии жир. Быстрые (белые) волокна, необходимые для короткой и высокоинтенсивной нагрузки, «питаются» запасами углеводов и креатина.

РАЗЛИЧИЯ МЫШЕЧНЫХ ВОЛОКОН

Наглядным примером различия мышечных волокон является мясо курицы: грудка и крылья обладают характерным белым цветом и минимальным содержанием жира в мясе, тогда как окорочка и бёдрышки отличаются более высоким содержанием жира и темным цветом.

Поскольку большую часть времени курица проводит стоя, мускулатура ее ног испытывает постоянную нагрузку низкого уровня – ответственность медленных волокон. Мышцы крыльев используются для резких энергичных взмахов – ответственность быстрых мышечных волокон.

МЕДЛЕННЫЕ / КРАСНЫЕ ВОЛОКНА

Важно не путаться в формулировках: выполнение какого-либо движения крайне медленно не означает автоматического вовлечения в работу медленных мышечных волокон. Для их задействования требуется легкая статичная нагрузка продолжительностью в несколько минут.

Мышцы, работающие при низкой интенсивности на протяжении десятков минут, требуют в качестве энергии для своей работы окисления жиров (триглицеридов) при помощи кислорода. Красный цвет таких мышечных волокон обусловлен именно наличием молекул кислорода.

БЫСТРЫЕ / БЕЛЫЕ ВОЛОКНА

Для высокоинтенсивных и краткосрочных нагрузок мышцы требуют быстродоступной энергии. Поскольку процессы окисления жира довольно длительны, в качестве источника энергии для взрывного усилия организм использует запасы углеводов (гликоген) и креатин фосфата.

Источником мышечного гликогена являются углеводы, источником креатин фосфата – мясо. Именно креатин доступен в виде спортивной добавки, увеличивающей как силу мышц, так и их визуальный объем за счет наполнения клеток питательными веществами и водой.

КАКИХ ВОЛОКОН У ВАС БОЛЬШЕ?

Любая мышечная группа человека состоит из волокон различных типов. За исключением преобладания медленных мышечных волокон в мышцах ног и позвоночника, мускулатура обычных людей состоит наполовину из быстрых, наполовину из медленных волокон.

При постоянных занятиях спортом организм может изменять это распределение, отдавая предпочтение тому типу волокон, который наиболее необходим. Спринтеры, прыгуны и тяжелоатлеты имеют больше быстрых волокон, тогда как марафонцы, велосипедисты и пловцы – медленных.

ТРЕНИРОВКИ ДЛЯ РОСТА МЫШЦ

Силовые тренировки в тренажерном зале вовлекают в работу преимущественно быстрые мышечные волокна, делая гликоген основным источником энергии. Чем меньше количество повторов упражнения и чем больше вес, тем сильнее задействованы быстрые волокна.

Поскольку увеличение размера мышц во многом связано именно с увеличением запасов гликогена, для успешного набора мускулатуры крайне важно иметь достаточное количество углеводов в питании как после силовой тренировки, так и непосредственно перед ее началом.

Мышечная сила.

Сила мышцы может быть определена как максимальное напряжению, которое она развивает в условиях изометрического сокращения.

Измерение мышечной силы у человека осуществляется при произвольном напряжении мышц (например, динамометрия). Поэтому когда говорят о мышечной силе человека, практически всегда речь идет о максимальной произвольной мышечной силе , т. е. о суммарной величине изометрического напряжения (точнее — о суммарном моменте) группы мышц при максимальном произвольном усилии испытуемого. Максимальная произвольная мышечная сила зависит от двух групп факторов, которые можно обозначить как мышечные (периферические) факторы и координационные (нервные) факторы.

К мышечным (периферическим) факторам относятся:

· механические условия действия мышечной тяги – плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам;

Этот фактор менее всего зависит от желаний или возможностей человека, его анатомические особенности определены геномом, а условия, при которых следует развить максимальную силу, специально создаются разве что на соревнованиях. Однако если ничего не мешает, человек или другой организм будет стремиться занять наиболее выгодное (удобное) положение для получения максимального результата движения (прыжка, удара, толчка и т.д.).

· поперечник активируемых мышц , так как при прочих равных условиях проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц.

Это, пожалуй, самый широко обсуждаемый фактор, и чаще всего естественно и искусственно изменяемый фактор. Действительно, максимальная сила мышцы зависит от числа мышечных волокон, составляющих данную мышцу, и от толщины этих волокон. Число и толщина их определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в кг/см 2 . Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине, а именно перпендикулярно ходу волокон, что важно учитывать при расчете относительной силы для мышц с косым расположением волокон.

Поперечный разрез мышцы, перпендикулярный ходу ее волокон, позволяет получить физиологический поперечник мышцы . Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим, Отношение максимальной силы мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы . Она колеблется в пределах 4 — 8 кг/см 2 .

Поскольку сила мышцы зависит от ее поперечника, увеличение последнего сопровождается ростом силы данной мышцы. Увеличение мышечного поперечника в результате мышечной тренировки называется рабочей гипертрофией мышцы. Мышечные волокна, являющиеся высокоспециализированными дифференцированными клетками не способны к делению с образованием новых волокон. Рабочая гипертрофия мышцы происходит отчасти за счет продольного расщепления, а главным образом за счет утолщения (увеличения объема) мышечных волокон.

Можно выделить два основных типа рабочей гипертрофии мышечных волокон. Первый тип (саркоплазматический) – утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. несократительной части мышечных волокон. Этот тип гипертрофии приводит к повышению метаболических резервов мышцы: запасов гликогена, безазотистых веществ, креатинфосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может в какой-то мере вызывать некоторое утолщение мышцы.

Первый тип рабочей гипертрофии мало влияет на рост силы мышц, но зато значительно повышает способность их к продолжительной работе, т. е. выносливость.

Второй тип рабочей гипертрофии (миофибриллярный) связан с увеличением объема миофибрилл, т. е. собственно сократительного аппарата мышечных волокон. При этом мышечный поперечник может увеличиваться не очень значительно, так как в основном возрастает плотность укладки миофибрилл в мышечном волокне. Второй тип рабочей гипертрофии ведет к значительному росту максимальной силы мышцы.

Существенно увеличивается и абсолютная сила мышцы, тогда как при первом типе рабочей гипертрофии она или совсем не изменяется или даже несколько уменьшается.

Преимущественное развитие первого или второго типа рабочей гипертрофии определяется характером мышечной тренировки. Вероятно, длительные динамические упражнения с относительно небольшой нагрузкой вызывают рабочую гипертрофию главным образом первого типа (преимущественное увеличение объема саркоплазмы, а не миофибрилл). Изометрические упражнения с применением больших мышечных напряжений (более 2/3 от максимальной произвольной силы тренируемых мышечных групп), наоборот, способствуют развитию рабочей гипертрофии второго типа (миофибриллярной гипертрофии).

· исходная длина мышц , при которой начинается её сокращение;

Для развития максимальной силы мышца перед началом сокращения должна быть в состоянии длины покоя, то есть максимально расслаблена, но не растянута (Рис.2.А).

Этот фактор специально учитывают спортсмены в тех видах спорта, где необходим высокий силовой результат. Например, тяжелоатлеты непосредственно перед поднятием штанги пытаются максимально расслабить мышцы, интенсивно встряхивая верхними и нижними конечностями.

Действительно, сточки зрения теории скользящих нитей (см. предыдущее занятие) при сокращении тонкие нити протягиваются (скользят) вдоль толстых. Усилие, которое при этом развивается, будет определяться исходной степенью перекрывания толстых и тонких нитей в саркомере.

Если исходная длина мышцы больше длины покоя (мышца исходно растянута) степень перекрывания головок миозина с нитями актина уменьшается (Рис. 2Б). Другими словами часть головок миозина еще в покое не контактирует с актином, а значит и не участвует в сокращении. Усилие, развиваемое сокращающейся мышцей, при этом снижается.

Если исходная длина мышцы меньше длины покоя (мышца исходно сокращена, а значит укорочена), то расстояние на которое саркомер, а следовательно и мышца может укоротиться при сокращении уменьшается (Рис. 2В).

К координационным (нервным) факторам относится совокупность центральнонервных координационных механизмов управления мышечным аппаратом, которые можно разделить на две группы: механизмы внутримышечной и межмышечной координации .

Механизмы внутримышечной координации , регулирующие напряжение конкретной мышцы мы подробно рассмотрели выше. Напомним для получения максимального результата сокращения, в нашем конкретном случае силового результата, необходимо, во первых – одновременная активация максимального числа двигательных единиц данной мышцы, т.е. активация максимально большого числа мотонейронов иннервирующих мышцу. Во-вторых, – режим полного тетануса у всех двигательных единиц, т.е. оптимальная частота импульсации этих мотонейронов. И в-третьих совпадение во времени активности разных двигательных единиц одной мышцы, т.е. не только максимальная но и одновременная активация мотонейронов иннервирующих мышцу. Это особенно важно в условиях тетанического сокращения.

Механизмы межмышечной координации координируют и согласуют сокращения всех мышц обеспечивающих движение, что так же влияет на показатель максимальной произвольной силы. В частности, совершенство межмышечной координации проявляется в правильном выборе активируемых мышц-синергистов, в адекватном ограничении активности мышц-антагонистов данного сустава и усилении активности мышц-антагонистов, обеспечивающих фиксацию смежных суставов и т. п.

Т.о., управление мышцами в случае, когда требуется проявить максимальную произвольную силу, является сложной задачей для центральной нервной системы. Поэтому, в обычных условиях, максимальная произвольная сила тех или иных групп мышц меньше, чем их максимальная сила.

Разница между максимальной силой мышц и их силой, проявляемой при максимальном произвольном усилии, называется силовым дефицитом .

Различие между максимальной силой и произвольной максимальной силой данной мышечной группы (силовой дефицит) тем меньше, чем совершеннее центральное управление мышечным аппаратом.

Величина силового дефицита зависит от трех факторов:

· психологического состояния испытуемого , так при некоторых эмоциональных состояниях человек может проявлять такую силу, которая намного превышает его максимальные силовые возможности в обычных условиях. У спортсменов такие состояния могут возникать во время соревнований.

От чего зависит сила мышцы?

При этом положительный эффект (уменьшение силового дефицита) более выражен у нетренированных испытуемых и слабее или совсем отсутствует у хорошо тренированных спортсменов, например тяжелоатлетов;

· количества одновременно активируемых мышечных групп, при одинаковых условиях измерения величина силового дефицита, по-видимому, тем больше, чем больше число одновременно сокращающихся мышечных групп.

· степени совершенства произвольного управления ими . Показано, например, что изометрическая тренировка, проводимая при определенном положении конечности, может вызвать значительное повышение максимальной произвольной силы, измеряемой в том же положении. Если измерения силы проводятся при других положениях конечности, то прирост мышечной силы оказывается незначительным или отсутствует совсем. Если бы увеличение силы зависело лишь от прироста поперечника тренируемых мышц, то оно должно бы обнаружиться при измерениях в любом положении конечности. Однако увеличение произвольной мышечной силы выявляется в основном при измерениях в определенной (тренируемой) позе. Это означает, что в данном случае прирост силы обусловлен более совершенным, чем до тренировки, центральным управлением мышцами, т. е. совершенствованием координационных (нервных) механизмов.

К одной из разновидностей мышечной силы относят так называемую взрывную силу , которая характеризует способность к быстрому проявлению мышечной силы. Она в значительной мере определяет, например, высоту вертикального прыжка или прыжка в длину с места, переместительную скорость на коротких отрезках бега с максимально возможной скоростью и др. В качестве показателей взрывной силы используют отношение максимальной проявляемой силы к времени ее достижения или времени достижения половины этой силы. Показатели взрывной силы мало зависят от максимальной произвольной изометрической силы соответствующих мышечных групп. Так, изометрические упражнения, увеличивая статическую силу, незначительно изменяют показатели прыгучести (вертикального прыжка или прыжка с места в длину). Следовательно, физиологические механизмы, ответственные за взрывную силу, отличны от механизмов, определяющих статическую силу. Среди координационных факторов важную роль в проявлении взрывной силы играет характер импульсации мотонейронов активных мышц — частота их импульсации в начале разряда и синхронизация импульсации разных мотонейронов.

Среди «мышечных» факторов определенное значение, видимо, имеют скоростные сократительные свойства мышечных волокон.

Предыдущая123456789101112Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Источники энергии.

Источниками энергии для мышечного сокра­щения обычно служит глюкоза, приносимая кровью или образующаяся при расщеплении гликогена в мышцах, а также жирные кислоты. При окислении этих молекул в митохондриях (аэробном дыхании) синтезируется АТФ.

Обычно кислород для дыхания поставляется гемоглобином крови. Однако мышцы могут так­же запасать его, поскольку содержат белок миоглобин, близкий по структуре к гемоглобину. Миоглобин также обратимо свя­зывается с кислородом (оксигенируется) и вы­свобождает ею в случае необходимости, когда кровь не успевает удовлетворять потребности мышечной ткани в кислороде, например при интенсивной физической нагрузке.

В расслабленной мышце уровень АТФ низок, поэтому АТФ быстро расходуется при сокращении и запас должен пополняться за счет иных механизмов, пока скорость аэробного дыхания не адаптиру­ется к возросшим энергозатратам.

Один из способов регенерации АТФ в анаэ­робных условиях основан на использовании креатинфосфата. Это вещество всегда присутст­вует в мышце, но его запасов обычно хватает ненадолго - за 1 мин интенсивной физической работы расходуется примерно 70% креатинфосфата. Следовательно, креатинфосфат полезен лишь в случае кратковременной и интенсивной мышечной активности, например при резком рывке во время спринтерского бега. Затем его запасы должны пополняться за счет окисления жирных кислот или глюкозы.

При интенсивной работе мыши кислород быстро расходуется и аэробное дыхание стано­вится невозможным. В таких условиях мышцы регенерируют АТФ за счет анаэробного расщеп­лении глюкозы. В этом случае говорят, что рабо­та мышцы создает кислородную задолжность.

Объем и сила мышц: почему некоторые люди - сильнее, а некоторые – объемнее

Одним из конечных продуктов анаэробного получения АТФ является молочная кислота. Накапливаясь в мышцах, она изменяет их кислотно-щелочной баланс, что выражается в повышенной утомляемости, боли, а иногда и в спазмах. Время полной переработки молочной кислоты - это именно то время, ко­торое необходимо для ликвидации кислородной задолженности после энергичной работы мыши. (к оглавлению) Путем тренировки можно повысить ус­тойчивость организма к молочной кислоте и, следовательно, увеличить объем развивающейся кислородной задолженности.

Выделяют два типа скелетных мышечных воло­кон, каждый из которых имеет свои физиологические особенности. Это медленные (тониче­ские) и быстрые (фазические волокна). В некоторых мышцах могут быть только быстрые или только медленные волок­на, в других - волокна обоих типов в определен­ном соотношении.

Благодаря волокнам этих двух типов орга­низм способен передвигаться и поддерживать позу. Быстрые волокна позволяют мышце со­кращаться с высокой скоростью. В большом ко­личестве эти волокна имеются у хищников; они обеспечиваю! быстроту реакций при ловле до­бычи. Вместе с тем потенциальная добыча, что­бы не стать жертвой хищников, тоже должна быть способна к быстрому реагированию. В обоих случаях от подвижности животного будут зависеть его шансы на выживание.

Когда животное находится в покое, оно под­держивает определенную позу с помощью тони­ческих мышечных волокон. Им свойственно бо­лее медленное и длительное сокращение, но за­то энергетические затраты при этом меньше, чем при сокращении быстрых волокон.

У человека все мышцы тела состоят из волокон обоих типов, но обычно один из них доминирует. Это имеет физиологическое значение, поскольку тонические мышцы способны к медленному и длительному сокращению и их соответственно больше в позных мышцах-разгибателях, тогда как сгибателях, предназначенных для быстрых реак­ций, преобладают фазические волокна.

Быстрые мышечные волокна иногда называ­ют белыми: в них относительно мало красного пигмента миоглобина, связывающего кислород.

В медленных волокнах его намного больше и их называют красными.

Определение силы

Физическая сила человека — это способность двигать груз, преодолевая сопротивление. Грузом может быть чье-то тело, лопата со снегом, гантель с дисками или любые другие предметы. Сопротивлением обычно выступает сила притяжения Земли, которую невозможно отделить от груза, потому что вес груза определяется как количество силы, которое необходимо, чтобы оторвать этот груз от центра Земли. Есть и другие формы сопротивления, не связанные с силой притяжения, такие, как, например, упругое сопротивление, которое можно преодолеть, растягивая пружину, или сопротивление трения, которое преодолевается, когда везешь сани.

Cуществует много форм силы мышц, каждая специфична для какой-то особой функции:

Многие факторы способствуют развитию физической силы мышц человека, и не все они связаны с мускулатурой. К примеру, если у вас короткие конечности (руки и ноги), то это может помочь вам в выполнении определенных силовых задач, потому что таким образом расстояние переноса груза будет меньше. Например, длинные ноги и руки ставят в невыгодное положение, когда выполняется жим лежа или приседания со штангой (но, эти свойства помогают при выполнении становой тяги).

Для повышения силовых показателей активно применяется спортивная фармакология, эргогенные средства и спортивное питание.

Два основных свойства , от которых зависит сила мышц, - это площадь поперечного сечения мускулов и нервно-мышечная эффективность. Площадь поперечного сечения мускулов отвечает за плотность мускулов. Обычно чем плотнее становится мускул, тем он способен проявить больше силы. Отчасти это из-за того, что у более плотных мускулов более плотное мышечное волокно, а в более плотных мышечных волокнах обычно содержится больше сократительного белка, который представляет собой основной механизм сокращения мышц. Увеличивать количество сократительного белка в мышечных волокнах - это все равно что добавлять еще одного человека со своей стороны при перетягивании каната.

Нервно-мышечная эффективность - в широком смысле это понятие приводит нас к пониманию сочетания мыслительных процессов и мышечной силы. Любое сокращение мышц начинается с мозга. Та часть в вашей голове, которая называется «двигательный центр», посылает электрический сигнал по позвоночнику и дальше по двигательным нервам в мышечные волокна, благодаря чему они начинают сокращаться. Спортивные тренировки ведут к таким изменениям в системе, которые дают возможность мускулам сокращаться быстрее, используя больше силы и более эффективно. Если вы представите ваш мозг в роли сержанта-инструктора по строевой подготовке, который отдает приказания взводу мышечных волокон, чтобы они начали сокращаться, то для вас подобный взгляд может оказать влияние, подобное увеличению громкости команд от шепота до крика.

Развитие нервно-мышечной активности происходит независимо от роста мышц. Вот почему вы никогда не можете сказать наверняка, насколько силен какой-либо человек, руководствуясь размером его мышц. Человек с относительно небольшими мускулами и высоким уровнем нервно-мышечной активности с большей вероятностью сможет победить человека с большими мускулами и низким уровнем нервно-мышечной активности.

В идеале тренировки на увеличение площади поперечного сечения мускулов отличаются от тренировок на повышение нервно-мышечной активности.

Головне меню

Если вы новичок, то, скорее всего, вы не заметите этой разницы и любой вид тренировок поможет вам как увеличить размеры мускулов, так и повысить нервно-мышечную активность. Увеличивая количество упражнений или вес штанги, вы продолжите развивать площадь поперечного сечения ваших мускулов, а также повышать нервно-мышечную активность. Хотя, становясь более опытным, вы придете к выводу, что это просто невозможно найти такой вид тренировок, который бы увеличил размеры и силу мускулов одновременно. На самом деле вы не можете увеличить количество упражнений и вес штанги одновременно. Если вы хотите увеличить объем ваших тренировок, вам неминуемо придется ограничить количество веса, который вы поднимаете, таким образом, ваши мускулы не станут изнуренными очень быстро. Но если вы решите увеличить вес, который вы поднимаете, то вам нужно ограничить объем тренировок, потому что поднятие (работа) с очень тяжелым весом утомляет мускулы.

Поднимать очень тяжелые грузы - это наиболее эффективный способ увеличить нервно-мышечную активность. Поэтому если вы предпочтете увеличить количество упражнений вместо весов, с которыми вы их выполняете, вы, вероятнее всего, придете к такому состоянию, когда количество упражнений, которые вы выполняете для того, чтобы увеличить размеры своих мускулов, выполняются за счет вашей нервно-мышечной активности, а сила мышц вообще перестает развиваться. Хотя если вашей целью является повышение максимальной силы мышц настолько, насколько это возможно, то вам нужно тренироваться таким способом, который бы сбалансировал рост мышц и развитие нервно-мышечной активности.

Читайте подробнее: Различия тренировки на силу и массу

Сила – с давних пор характеризуется как способность человека преодолевать внешнее сопротивление или противодействовать ему посредством мышечных усилий.

То есть под этим понятием подразумевают любую способность человека напряжением мышц преодолевать механические и биомеханические силы, препятствующие действию, противодействовать им, обеспечивая тем самым эффект действия (вопреки препятствующим силам тяжести, инерции, сопротивления внешней среды и т.п.) (Л. П. Матвеев, 1991).

Сила - одно из важнейших физических качеств в аб­солютном большинстве видов спорта. Поэтому ее разви­тию спортсмены уделяют исключительно много внимания.

В зависимости от условий, характера и величины про­явления мышечной силы в спортивной практике принято различать несколько разновидностей силовых качеств.

Чаще всего сила проявляется в движении, т. е. в так называемом динамическом режиме («динамичес­кая сила »). Иногда же усилия спортсмена движением не сопровождаются. В этом случае говорят о статичес­ком (или изометрическом) режиме работы мышц («статическая сила ») (С. М. Вайцеховский, 1971).

Абсолютная и относительная сила

Оценивая величину усилия в том или ином упражне­нии или простом движении, применяют термины «абсо­лютная» и «относительная» сила.

Предельное, максимальное усилие, которое спортсмен может развить в динамичес­ком или статическом режиме. Примером проявления абсолютной силы в динамическом режиме является под­нимание штанги или приседание со штангой предельного веса. В статическом режиме абсолютная сила может быть проявлена, например, когда максимальное усилие прилагается к неподвижному объекту («выжимание» неподвижно закрепленной штанги).

Относительная сила - величина силы, прихо­дящаяся на 1 кг веса спортсмена. Этот показатель при­меняется в основном для того, чтобы объективно срав­нить силовую подготовленность различных спортсменов.

Факторы, обуславливающие мышечную силу

Мышечная сила зависит от нескольких факторов. Основ­ной из них - физиологический поперечник мышц. Прак­тически это означает, что чем мышца толще, тем большее напряжение она может развить (принцип Вебера). Однако не всегда бывает так, поскольку сила мышцы зависит и от другого факто­ра - нервной регуляции, осуществляемой соответствую­щими отделами коры больших полушарий головного мозга.

Нервная регуляция, в свою очередь, определяется тремя различными показателями: количеством «включае­мых» в работу мышечных волокон (так называемых двигательных единиц), частотой нервных импульсов, поступающих в мышцу по нервным путям из центральной нервной системы, и степенью синхронизации (совпаде­ния) усилий всех двигательных единиц, принимающих участие в напряжении мышцы.

Под влиянием импульсов, поступающих в мышцу по двигательным (эфферентным) нервным путям, мышца сокращается с определенным заданным усилием и на за­данную длину. Правильность выполнения движения контролируется соответствующими нервными клетками (рецепторами) мышцы, информация от которых по чувст­вительным (афферентным) нервным путям поступает в головной мозг. По таким же нервным путям мышца получает сигнал и к расслаблению. Максимально возможное ее сокращение (укорочение) при прочих равных условиях пропорционально длине мышечных волокон (принцип Бернулли) (А. Н. Воробьев, 1988). Однако даже нерабо­тающая мышца всегда сохраняет некоторое напряжение, называемое мышечным тонусом.

В исследованиях (Ю. В. Верхошанский, 1988; В. М. Зациорский, 1970) обна­ружено, что различные типы силовых проявлений (например, в статических условиях, в продолжительном беге, в скоростно-силовых упражнениях) в спорте и вообще в двигательной деятельности нередко мало связаны или даже отрица­тельно коррелируют друг с другом. Это и послужило поводом для дифференциации понятия "сила".

Литература

  1. Вайцеховский С. М. Книга тренера. – М.: Физкультура и спорт, 1971. – 312 с.
  2. Верхошанский Ю. В. Основы специальной физической подготовки спортсменов. – М.: Физкультура и спорт, 1988. – 331 с.
  3. Дворкин Л. С. Силовые единоборства. Атлетизм, культуризм, пауэрлифтинг, гиревой спорт. – М., 2001. – 223 с.
  4. Дворкин Л. С., Хабаров А. А., Евтушенко С. Ф. Методика силовой подготовки школьников 13–15 лет с учетом их соматической зрелости // Теория и практика физической культуры. 1999, № 3, с. 34–35.
  5. Дворкин Л. С., Хабаров А. А., Лысенко В. В. Опыт базовой силовой подготовки школьников 12–14 лет различной силовой специализации // Физкультура и спорт, 2000, № 1, с. 34–38.
  6. Дворкин Л. С. Юный тяжелоатлет. – М.: Физкультура и спорт, 1982. – 160 с.
  7. Зациорскнй В. М. Физические качества спортсмена.– М., Физкультура и спорт, 1970. – 212 с.
  8. Коренберг В. Б. Проблема физических и двигательных качеств // Теория и практика физической культуры, 1996, № 7, с. 2-5.
  9. Коц Я. М. Физиология мышечной деятельности. Учебн. для ин-тов физ. культ. М.,1982. – 415 с.
  10. Марченко В. В., Дворкин Л. С., Рогозян В. Н. Анализ силовой подготовки тяжелоатлета в нескольких макроциклах // Теория и практика физической культуры. 1998, № 8, с. 18–22.
  11. Матвеев Л. П. Основы спортивной тренировки. – М.: Физкультура и спорт, 1977. – 271 с.
  12. Матвеев Л. П. Теория и методика физической культуры. Учебное пособие для ин-тов физ. культуры. –– М.: Физкультура и спорт, 1991. – 543 с.
  13. Озолин Н. Г. Современная система спортивной тренировки. – М., Физкультура и спорт, 1970. – 356 с.
  14. Теория и методика физического воспитания (под общ. ред. Л. П. Матве­ева и А. Д. Новикова). М., Физкультура и спорт, 1976. – 423 с.
  15. Филин В. П. Воспитание физических качеств у юных спортсменов. – М.: Физкультура и спорт, 1974. – 232 с.
  16. Хэтфилд Ф. К. Всестороннее руководство по развитию силы. Пер. с англ. – Владивосток: Изд. "Восток", 1996. – 390 с.

Дипломная работа «Методика воспитания силовых способностей юных тяжелоатлетов с использованием тренажеров» (см. в Библиотеке).



 

Возможно, будет полезно почитать: