Какие мышцы обладают наибольшей силой. Понятие о мышечной силе

Все, кто любит спорт, знают, конечно, имя замечательного советского спортсмена, рекордсмена мира по прыжкам в длину Игоря Тер-Ованесяна . Но не всем, вероятно, известно, что однажды, после неудачного падения во время лыжной тренировки, Игорь услышал от врачей:

– Вы больше не спортсмен, молодой человек.

Нет, нога не была сломана, но частично были повреждены мышечные и нервные волокна, наступила атрофия мышц – уменьшение ее в размерах, ослабление, что бывает при длительном бездействии или нарушении питания мышцы.

Приговор был тяжелым, но… через два с половиной года Игорь установил новый рекорд мира. Как же это могло произойти? «Чудо» сотворил спорт.

Сам спортсмен, уезжая домой, говорил друзьям:

— Буду потихоньку тренироваться. Я верю в поистине чудодейственную силу физических упражнений – они еще никого никогда не подводили.

И вот «чудо» произошло. В июне 1962 года на соревнованиях в Ереване Игорь Тер-Ованесян прыгнул на 8 метров 31 сантиметр. А совсем недавно, в октябре 1967 года, на предолимпийских соревнованиях в Мехико Игорь довел рекорд Европы в прыжках в длину до 8 метров 35 сантиметров. Это повторение мирового рекорда американского спортсмена Ральфа Бостона .

Сила мышц человека

«Мышечное сокращение – это одно из удивительных явлений в живом мире. Поистине чудо, что мягкий студень может внезапно становиться твердым, изменять свою форму и поднимать груз, вес которого в тысячу раз выше его собственного, да притом еще делать это не один раз. Мышца, без сомнения, один из интереснейших экспонатов в богатом музее природы ». Эти слова принадлежат известному венгерскому ученому Сент-Дьёрди.

Каждый знает, что даже самое простое движение осуществляется при участии многих мышц. Одни обеспечивают основное движение, другие – плавность и соразмерность движений.

Они позволяют человеку осуществлять бесконечное многообразие движений с различной силой сокращений. Ведь иногда надо поднять с пола спичку, а иногда тяжелую гирю.

От чего же зависит сила мышечного сокращения ? Все от тех же нервных импульсов, о которых мы уже говорили.

Вообще в организме мышцы никогда не бывают вполне расслабленными. Это постоянное их напряжение называется тонусом (от греческого слова «тонос» – напряжение). Интересно, что мышечный тонус сохраняется без всякой затраты энергии. Это и понятно: ведь энергию приходится затрачивать тогда, когда нужно выполнить какую-то работу.

Вот простой пример. На стене висит картина. Казалось бы, что гвоздь, на котором она держится, многие годы верно выполняет свою службу. А ведь с точки зрения физики он «безработный», так как никакой видимой энергии при этом не затрачивает.

Но почему же человек устает, если неподвижно сидит или несет тяжесть, скажем, под уклон? Ведь кастрюля, стоящая на столе, «не устает», даже если она наполнена водой.

Конечно, любому школьнику понятно, что стоящий человек по сравнению с любым неодушевленным предметом непрерывно работает – он должен поддерживать равновесие. Идущий человек работает еще энергичнее – ему с каждым шагом приходится поднимать тяжесть собственного тела. И энергия эта буквально «уходит в землю»: она передается почве, вызывая ее сотрясение. Чем больше весит тело человека и груз, который он несет, тем больше расходуется энергии.

Энергия, энергетические процессы … Те, что происходят в живом организме, очень сложны. Найти для этих процессов какое-либо подобие в технике пока нельзя. Ни одна тепловая машина не работает так экономно и не имеет такого высокого коэффициента полезного действия, как живая мышца. КПД мышцы приближается к 50 процентам, тогда, как, например, у паровых машин он почти в 10 раз ниже – 5–7 процентов.

Наши мышцы обладают и еще одним ценным качеством – они могут работать «в долг», за счет собственных энергетических запасов.

Кто бегал стометровку, тот знает: за те 10–14 секунд можно успеть сделать всего один-два вдоха. Да и кровь за этот короткий промежуток времени, конечно, не успеет доставить мышцам нужное им количество кислорода. Для этого ей пришлось бы протекать по кровеносным сосудам в десятки раз быстрее, чем обычно.

Но вот спринтер у финиша, он еще бежит несколько метров, потом идет шагом, останавливается. Теперь он дышит часто и глубоко, сердце его бьется значительно быстрее и с каждым ударом выбрасывает в сосуды намного больше крови , чем до старта.

Конечно, мышца не может работать «в долг» неограниченное время. Наступает момент, когда ее энергетические запасы истощаются – мышца устает. И этому есть характерные примеры.

Кто видел когда-нибудь на стадионе бег на 400 метров? Это зрелище очень хорошо иллюстрирует умение наших мышц работать «в кредит».

Сначала бегуны несутся как настоящие спринтеры; в таком темпе они пробегают первые 200 метров. Может быть, удается пробежать и еще 100 метров в том же темпе. Но картина бега резко меняется: как будто тяжелый груз придавливает спортсменов к земле, причем всех почти одновременно. Кажется, что бегут они, как говорится, только волей, «на нервах».

«Скисли!» – презрительно заметит иной неопытный болельщик или случайный зритель. Но ведь это совсем не так. И если кто хоть раз, пробегая эту дистанцию, испытал на себе ни с чем не сравнимое чувство свинцовой тяжести вблизи трехсотметровой отметки, тот никогда так не скажет.

Почему мышцы устают?

Первые две стометровки мышцы бурно расходуют энергию, и подходит момент, когда запасы ее истощились, а переработанные вещества – продукты обмена, ненужные организму (например, так называемая молочная кислота – один из конечных продуктов распада гликогена – животного крахмала),– не успели удалиться.

В это время спортсмен как раз и ощущает сильное мышечное утомление, и бег намного замедляется: мышцы, использовав все оставшиеся запасы энергии и питания, работают практически без доставки кислорода. Но вот кровь начинает циркулировать быстрее, дыхание и сердцебиение учащаются. Мышцы снова начинают получать достаточное количество кислорода. Сила мышц вновь возрастает.

Такого тяжелого перелома не бывает, если спортсмен бежит на длинную дистанцию. У стайера утомление накапливается постепенно, но тоже иногда достигает такой степени, что впору сходить с беговой дорожки. Так иногда и поступают новички. Если же силы воли и опыта хватает и бег продолжается, то бегун вдруг ощущает прилив новых сил. Спортсмены образно назвали его «вторым дыханием ». Это значит, что мышцы, как и весь организм, приспособились к новому ритму работы.

И, наконец, мышцы обладают еще одним важным свойствомспособностью к тренировке .

Понимание этой темы позволит вам регулярно повышать рабочие веса в абсолютно любом упражнении, избегая так называемого «плато». Если вы грезите большими мышечными объемами, обязательно прочитайте нижеприведенную информацию.

Бытует мнение, согласно которому сила мышцы напрямую зависит от её объёма, то есть чем больше мышечная группа, тем большую силу она может развить. Данное высказывание верно лишь отчасти. Постараемся объяснить почему.

Влияние нервной системы
Прежде всего, необходимо вспомнить базовый курс физиологии. Скелетные мышцы человека обладают удивительным свойством - они могут работать не всей массой, а лишь определенными частями. Грубо говоря, именно этот факт позволяет нам регулировать силу.

Управление сократительной активностью мышц происходит с помощью мотонейронов – особых клеток нервного типа, которые находятся в спинном мозге. Именно отсюда по специальным каналам (аксонам) в каждую мышцу посылается сигнал той или иной мощности. В то же время ветки аксона непосредственно возле мышечной группы разветвляются на огромное количество канальцев, каждый из которых подведен к отдельной мышечной клетке – симпласту.

Чем сильнее сигнал поступает от мотонейронов, тем большее количество мышечных волокон включается в работу. Именно так мы регулируем силу и скорость мышечного сокращения, однако показатель максимальной силы зависит совсем от других факторов.

Тетанус
Для того чтобы продолжить, необходимо ввести термин тетанус – это состояние длительного непрерывного сокращения. Данный процесс наблюдается при подъеме рабочего веса (позитивное движение), при опускании (негативное движение) и при статическом удержании.

Сила тетануса зависит от характера и скорости сокращения мышц. Следует помнить: чем быстрее сокращается мышца, тем меньшую силу она может создать . Следовательно, максимальная скорость сокращения мышечного волокна наблюдается при отсутствии внешней нагрузки. В то же время максимальная сила развивается при негативном движении, например в опускании штанги при жиме лежа.

Влияние типов мышечных волокон Как уже говорилось выше, сокращение мышцы начинается с сигнала ЦНС, который поступает в мотонейрон, а оттуда по аксонам к мышцам. Силу сигнала контролирует человеческий мозг, и чем сильнее воздействие на мотонейрон, тем выше частота импульса поступающего по аксонам.

Для ходьбы, как правило, достаточно 4-5 Гц, однако максимальная частота может превышать 50 Гц. В спинном мозге существуют мотонейроны как быстрого, так и медленного типа. Первые могут создавать высокочастотный импульс, который вызовет гораздо большую силу, нежели частоты медленных мотонейронов. Интересным фактом является то, что все быстрые мотонейроны подключены к быстрым мышечным волокнам (белым), а медленные в свою очередь к одноименным (красным).

Сила мышечной группы так же зависит от самой банальной характеристики – количества активных в данный момент волокон. Люди, у которых количество быстрых (белых) мышечных волокон преобладает, могут похвастаться большей силой, так как за единицу времени могут задействовать большее число мышечных клеток.

Люди с преимущественно красными (медленными) волокнами не выделяются силовыми результатами, зато они сильнее предрасположены к совершению длительной работы с умеренной нагрузкой.

Защитные механизмы
Нельзя не отметить существование целой защитной системы под названием органы Гольджи, которые находятся непосредственно в сухожилиях. Они играют роль «сканеров», которые проверяют каждый сигнал, посланный из ЦНС.

При регистрации слишком сильного напряжения, потенциально опасного для костей и суставов, органы Гольджи оказывают угнетающее и тормозящее действие на все активные мотонейроны. В итоге по аксонам идет заниженный сигнал, что в свою очередь заметно ослабляет ту или иную мышечную группу. К сожалению, зачастую данный процесс начинается задолго до реальной опасности. Организм лишний раз подстраховывается, вследствие чего органы Гольджи работают «с запасом».

Однако не все так плохо, ведь данная характеристика тренируется. Регулярные субмаксимальные нагрузки способствуют повышению порога возбудимости органов Гольджи. Кроме того стоит учесть, что некоторые люди от рождения обладают хорошо развитой сухожильной системой, вследствие чего проявляется так называемая сверхсила.

Влияние мышечного энергообмена
Еще одним важным фактором, влияющим на силу мышечной группы, является режим , в котором выполняетсся то или иное упражнение.

Естественно каждый читатель знает о том, что максимальный рабочий вес, то есть сила, зависит и от количества времени под нагрузкой (количества повторений).

В рамках данной темы достаточно отметить, что исходный уровень АТФ и КрФ заметно влияет на возможный рабочий вес отягощения в любом упражнении. Однако стоит помнить, что у некоторых людей, и в частности спортсменов со стажем, уровень энергетических ресурсов достаточно высок, и прием креатиновых добавок в этом случае не поспособствует заметному увеличению силы. В то же время, новичок с заведомо низким уровнем КрФ и АТФ может получить невероятный скачок в силе, за счет банального употребления креатина.

В случае с 8-12 повторениями, ключевую роль играет не количество фосфатов, а каскад других характеристик, таких как: способность сопротивляться лактату (молочной кислоте), количество гликогена мышц, частота мотонейронных сигналов и других. Также стоит отметить, важность активности фермента АТФазы , который расщепляет АТФ и дарит нам энергию.

Данная характеристика всецело зависит от кислотности среды. Так, в нейтральной среде (pH=7) данный фермент показывает отличную работоспособность, но как только в мышечной группе начнут появляться кислые продукты метаболизма, активность АТФазы начнет спадать к нулю. Если в диапазоне повторений 1-6 лактата нет, то при 8-12 рабочих движениях, молочная кислота непременно понизит ваши силовые характеристики.

Практические выводы
Резюмируем всё вышесказанное. Итак, сила мышц зависит от следующих факторов:

  • Силы и частоты сигналов ЦНС и мотонейронов соответственно;
  • Количества мышечных волокон, в частности быстрого (белого) типа;
  • Высокого порога возбудимости органов Гольджи, то есть от крепости связок и суставов;
  • Количества гликогена, АТФ, КрФ или способности противостоять лактату, при том или ином количестве повторений.

Теперь, зная какие факторы влияют на силу мышц, вы можете развивать каждую отдельную характеристику, будь то нервная система или количество КрФ.

Выбор тренировочной цели зависит от того, какую силу вы развиваете: на 1-6 повторений или на 8-12. Необходимо помнить, что у любой характеристики есть свой предел развития. Если вы столкнулись с застоем, попробуйте сменить тренировочную цель. Как правило, достаточно поменять количество повторений.

Стоит отметить, что любая тренировка и развитие силы в целом, увеличивает количество мышечных волокон и объем мускулатуры. Именно поэтому все представители силовых видов спорта обладают хорошим телосложением.

Мы перевели, переработали и отредактировали грандиозную базовую статью Грега Нуколса о том, как взаимосвязан объем и сила мышц. В статье подробно объясняется, к примеру, почему средний пауэрлифтер на 61% сильнее среднего бодибилдера при том же объеме мышц.

Наверняка вам встречалась такая картина в спортзале: огромный мускулистый парень делает приседания с 200-килограммовой штангой, пыхтя и делая небольшое количество повторений. Затем с такой же штангой работает парень с намного менее массивными ногами, но легко делает большее количество повторений.

Аналогичная картина может повторяться и в жиме или становой. Да и из курса школьной биологии нас учили: сила мышцы зависит от площади поперечного сечения (грубо говоря – от толщины), однако наука показывает, что это сильное упрощение и дело обстоит не совсем так.

Площадь поперечного сечения мышцы.

В качестве примера посмотрите, как 85-килограммовый парень жмет от груди 205 кг:

Однако гораздо более массивные ребята не могут приблизиться к таким показателям в жиме.

Или вот 17-летний атлет приседает со штангой 265 кг:

При этом его объемы намного меньше многих атлетов, кому до такого результата далеко.

Ответ прост: на силу влияет много других факторов, кроме объема мышц

Средний мужчина весит около 80 кг. Если человек – не тренированный, то тогда около 40% веса его тела составляют скелетные мышцы или около 32 кг. Несмотря на то, что рост мышечной массы очень сильно зависит от генетики, в среднем мужчина способен за 10 лет тренировок увеличить свою мышечную массу на 50%, то есть добавить к своим 32 кг мышц еще 16.

Скорее всего 7-8 кг мышц из этой прибавки добавится в первый год упорных тренировок, еще 2-3 кг – за следующие пару лет, а остальные 5-6 кг – за 7-8 лет упорных тренировок. Это типичная картина роста мышечной массы. С ростом мышечной массы примерно на 50% сила мышц возрастет в 2-4 раза.

Грубо говоря, если в первый день тренировок человек может поднять на бицепс вес в 10-15 кг, то впоследствии этот результат может вырасти до 20-30 кг.

С приседом: если в первые тренировки вы приседали с 50-килограммовой штангой, этот вес может вырасти до 200 кг. Это не научные данные, просто для примера – как могут расти силовые показатели. При подъеме на бицепс сила может вырасти примерно в 2 раза, а вес в приседаниях – в 4 раза. Но при этом объем мышц вырос только на 50%. То есть получается, что в сравнении с ростом массы, сила растет в 4-8 раз больше.

Безусловно мышечная масса имеет важное значение для силы, но, возможно, не определяющее. Давайте пройдемся по основным факторам, влияющим на силу и массу.

Мышечные волокна

Как показывают исследования: чем больше размер мышечного волокна, тем больше его сила.

На этом графике показана явная зависимость размеров мышечных волокон и их силы:

Как зависит сила (вертикальная шкала) от размера мышечных волокон (горизонтальная шкала). Исследование: From Gilliver, 2009 .

Однако если абсолютная сила стремится к росту при бОльшем объеме мышечных волокон, относительная сила (сила в соотношении с размером) — наоборот — падает .

Давайте разберемся почему так происходит.

Есть показатель для определения силы мышечных волокон относительно их объема — “specific tension” (переведем его как «удельная сила»). Для этого нужно максимальную силу разделить на площадь поперечного сечения:

Мышечные волокна: удельная сила волокон бодибилдеров на 62% ниже лифтеров

Так вот дело в том, что удельная сила очень сильно зависит от типа мышечных волокон .

В этом исследовании ученые выяснили, что удельная сила мышечных волокон профессиональных бодибилдеров на целых 62% ниже, чем у профессиональных лифтеров .

То есть, условно говоря, мышцы среднего пауэрлифтера сильнее на 62% мышц среднего бодибилдера при одинаковом объеме.

Более того, мышечные волокна бодибилдеров также слабее на 41%, чем у нетренированных людей из расчета на их площадь поперечного сечения. То есть из расчета на квадратный сантиметр толщины, мышцы бодибилдеров слабее, чем у тех, кто вообще не тренировался (но в целом, бодибилдеры, конечно, сильнее за счет общего объема мышц).

В этом исследовании сравнили разные мышечные волокна и выяснили, что самые сильные мышечные волокна в 3 раза сильнее самых слабых той же толщины — это очень большая разница.

Мышечные волокна быстрее растут в площади сечения, чем в силе

Так вот оба этих исследования показали, что с увеличением размера мышечных волокон их сила к толщине падает . То есть в размерах они растут больше, чем в силе .

Зависимость такая: при удвоении площади поперечного сечения мышцы ее сила вырастает только на 41%, а не в 2 раза .

В этом плане с силой мышечного волокна лучше коррелирует диаметр волокна, а не площадь сечения (внесите это исправление в школьные учебники по биологии!)

В конечном итоге все показатели ученые свели вот к такому графику:

По горизонтали: увеличение площади поперечного сечения мышцы. Синяя линия — рост диаметра, красная — общий рост силы, желтая — рост удельной силы (на сколько сила увеличивается при увеличении площади поперечного сечения).

Вывод, который можно сделать: с ростом объема мышц растет и сила, однако прирост размера мышцы (т.е. площади поперечного сечения) обгоняет прирост силы . Это усредненные показатели, собранные из целого ряда исследований и в некоторых исследованиях данные разнятся.

К примеру, в этом исследовании за 12 недель тренировок у подопытных площадь сечения мышц выросла в среднем на 30%, но при этом удельная сила не изменилась (то есть, читаем между строк, сила тоже увеличилась примерно на 30%).

Результаты этого исследования схожи: площадь поперечного сечения мышцы увеличилась у участников на 28-45% после 12 недель тренировок, но удельная сила не изменилась.

С другой стороны, эти 2 исследования (раз и два) показали увеличение удельной силы мышц при отсутствии роста самих мышц в объеме. То есть сила выросла, а объем — нет и благодаря этому сочетанию, получается, выросла удельная сила.

Во всех этих 4 исследованиях сила росла в сравнении с диаметром мышцы, но в сравнении с площадью поперечного сечения сила росла только в том случае, если мышечные волокна не росли.

Итак, давайте подытожим важную тему с мышечными волокнами:

  • Люди сильно отличаются по количеству мышечных волокон того или другого типа . Помните: удельная сила мышечных волокон у лифтеров (тренирующих силу) в среднем на 61% больше, чем у бодибилдеров (тренирующих объем). Грубо говоря, при одинаковых по объему мышцах лифтерские сильнее в среднем на 61%.
  • Самые слабые мышечные волокна в 3 раза слабее самых сильных . Их количество у каждого человека определяется генетически. Это означает, что гипотетически максимально возможная разница в силе мышц одного и того же объема — различается до 3 раз.
  • Удельная сила (сила на квадратный сантиметр поперечного сечения) не всегда растет с тренировками . Дело в том, что площадь поперечного сечения мышц растет в среднем быстрее, чем сила.

Место прикрепления мышц

Важный фактор силы — это то, как крепятся мышцы к костям и длина конечностей. Как вы помните из школьного курса физики — чем больше рычаг, тем легче поднимать вес.

Если прилагать усилие в точке А, то потребуется намного больше силы для подъема того же веса по сравнению с точкой B.

Соответственно, чем дальше мышца прикреплена (и чем короче конечность) — тем больше рычаг и тем бОльший вес можно поднять. Этим отчасти объясняется, почему некоторые довольно худые ребята способны поднимать намного больше некоторых особо объемных.

К примеру, в этом исследовании говорится, что разница в силе в зависимости от места прикрепления мышц в коленном суставе у разных людей составляет 16-25%. Тут уж как повезло с генетикой.

Причем, с ростом мышц в объеме момент силы увеличивается: это происходит потому, что с ростом мышцы в объеме «угол атаки» немного меняется и этим отчасти объясняется то, что сила растет быстрее объема.

В исследовании Andrew Vigotsky есть отличные картинки, наглядно демонстрирующие, как это происходит:

Самое главное — это заключение: последняя картинка, демонстрирующая, как с ростом толщины мышцы (площади поперечного сечения) — меняется угол приложения усилий, а значит и двигать рычаг более объемным мышцам становится легче.

Способность нервной системы активировать больше волокон

Еще один фактор силы мышц вне зависимости от объема — способность ЦНС (центральной нервной системы) активировать как можно большее количество мышечных волокон для сокращения (и расслаблять волокна — антагонисты).

Грубо говоря, способность максимально эффективно передавать мышечным волокнам правильный сигнал — на напряжение одних и расслабление других волокон. Вы наверняка слышали, что в обычной жизни мы способны передавать мышцам лишь определенное нормальное усилие, но в критический момент сила может вырастать многократно. В этом месте обычно приводятся примеры, как человек поднимает автомобиль, чтобы спасти жизнь близкого (и таких примеров действительно довольно много).

Впрочем, научные исследования пока не смогли доказать это в полной мере.

Ученые сравнивали силу «добровольного» сокращения мышц, а затем с помощью электростимуляции добивались еще большего — 100% напряжения всех мышечных волокон.

В результате оказалось, что «добровольные» сокращения составляют около 90-95% от максимально возможной сократительной силы , которой добивались с помощью электростимуляции (непонятно только какую погрешность и влияние такие «стимулирующие» условия оказали на мышцы-антагонисты, которые нужно расслаблять для получения большей силы — прим. Зожника ).

Ученые и автор текста делают выводы: вполне возможно, что некоторые люди смогут значительно увеличить силу, натренировав передачу сигналов мозга к мышцам, но большинство людей не способны значительно увеличить силу только за счет улучшения способности активировать больше волокон.

Нормализованная сила мышцы (НСМ)

Максимальная сократительная сила мышцы зависит от объемов мышцы, силы мышечных волокон, из которых она состоит, от «архитектуры» мышцы, грубо говоря, от всех факторов, что мы указали выше.

Объем мышцы согласно исследованиям отвечает примерно за 50% разницы в силовых показателях у разных людей.

Еще 10-20% разницы в силе объясняют «архитектурные» факторы, такие как место прикрепления, длина фасций.

Остальные факторы, отвечающие за оставшиеся 30-40% разницы в силе, вообще не зависят от размеров мышц .

Для того, чтобы рассмотреть эти факторы важно ввести понятие — нормализованная сила мышцы (НСМ) — это сила мышцы в сравнении с площадью ее сечения. Грубо говоря, насколько сильна мышца по сравнению со своим размером .

Большинство исследований (но не все) показывают, что НСМ растет по мере тренировок. Но при этом, как мы рассмотрели выше (в разделе про удельную силу), сам по себе рост объема не дает такой возможности, это значит, что рост силы обеспечивается не только ростом объема, улучшением прохождения мышечных сигналов, а другими факторами (теми самыми, что отвечают за те оставшиеся 30-40% разницы в силе).

Что это за факторы?

Улучшение качества соединительных тканей

Один из этих факторов — с ростом тренированности улучшается качество соединительной ткани, передающей усилия от мышц к костям . С ростом качества соединительной ткани скелету передается бОльшая часть усилий, а значит растет сила при том же объеме (то есть растет нормализованная сила).

Согласно исследованию до 80% силы мышечного волокна передается окружающим тканям, которые прикрепляют мышечные волокна к фасциям с помощью ряда важных белков (endomysium, perimysium, epimysium и другие). Эта сила передается сухожилиям, увеличивая общую передаваемую силу от мышц к скелету.

В этом исследовании , к примеру, показано, что ДО тренировок НСМ (сила всей мышцы на площадь поперечного сечения) была на 23% выше, чем удельная сила мышечных волокон (сила мышечных волокон на площадь поперечного сечения этих волокон).

А ПОСЛЕ тренировок НСМ (удельная сила всей мышцы) была на 36% выше (удельной силы мышечных волокон). Это означает, что сила всей мышцы при тренировках растет лучше, чем сила суммы всех мышечных волокон .

Ученые связывают это с ростом соединительных тканей, позволяющих эффективнее передавать силу от волокон к костям.

Сверху и снизу схематично показаны сухожилия — между ними — мышечное волокно. С ростом тренированности (правый рисунок) растет и соединительная ткань вокруг мышечных волокон, количество и качество соединений, позволяя эффективнее передавать усилие мышечного волокна к сухожилиям.

Идея о том, что с ростом тренированности улучшается качество волокон передающих усилие (и рисунок выше) взяты из исследования 1989 года и пока это по большей части теория.

Впрочем, есть исследование 2010 года , поддерживающее эту позицию. В ходе этого исследования при не изменившихся показателях мышечных волокон (удельная сила, пиковая сила) общая сила всей мышцы в среднем выросла на 17% (но с большим разбросом у разных людей: от 6% до 28%).

Антропометрия как фактор силы

В дополнение ко всем перечисленным факторам силы мышц, общая антропометрия тела также влияет на количество выдаваемой силы и насколько эффективно эта сила может передаваться при сгибании суставов (причем, независимо от момента силы отдельных суставов).

Возьмем для примера приседание со штангой. Гипотетическая ситуация: 2 одинаково тренированных человека с мышцами одинакового размера и состава волокон, идентично прикрепленные к костям. Если при этом у человека А бедро длиннее на 20%, чем у человека B, то человек B должен гипотетически приседать с весом на 20% больше .

Однако в реальности все происходит не совсем так, в связи с тем, что при изменении длины костей пропорционально меняется и место прикрепления мышц.

Таким образом, если у человека А бедро длиннее на 20%, то и место прикрепления мышц к кости бедра (величина рычага) также пропорционально — на 20% дальше — а значит, длина бедра нивелируется выигрышем в прикреплении мышцы дальше от сустава. Но это в среднем . В реальности антропометрические данные, конечно, разнятся от человека к человеку.

Например, есть наблюдение , что пауэлифтеры с более длинной голенью и коротким бедром склонны приседать с бОльшим весом, чем те, у кого бедро длиннее относительно голени . Аналогичное наблюдение и по поводу длины плеча и жима штанги от груди.

Независимо от всех остальных факторов антропометрия тела вносит коррективу в силу, однако измерение этого фактора представляет сложность, так как сложно отделить его от других.

Специфичность тренировок

Вы прекрасно знаете о специфичности тренировок: что тренируешь — то и улучшается. Наука говорит, что специфичность работает в отношении самых разных аспектов тренировок. Значительная часть этого эффекта работает благодаря тому, что нервная система учится эффективнее совершать определенные движения.

Вот простой пример. Это исследование часто используют в качестве примера, иллюстрирующего принцип специфичности:

  • 1 группа тренировалась с весом 30% от — по 3 повторения до мышечного отказа.
  • 2 группа тренировалась с весом 80% от 1ПМ — и делала только 1 повторение до мышечного отказа.
  • 3 группа тренировалась с весом 80% от 1ПМ — по 3 повторения до мышечного отказа.

Наибольшего улучшения в силе ожидаемо добилась группа 3 — тренировки с тяжелым весом и 3 подхода в упражнении.

Однако когда в конце исследований среди всех групп проверяли максимальное количество повторений с весом 30% от 1ПМ, то наилучший результат показала группа, которая и тренировалась с 30% от 1ПМ. Соответственно, при проверке максимального веса на 1ПМ результаты лучше выросли у тех, кто тренировался с 80% от 1ПМ.

Еще одна любопытная деталь в этом исследовании: когда стали проверять как изменились результаты в статической силе (ее не тренировали ни в одной из 3 групп) — то результаты в росте этого показателя были одинаковы, так как все 3 группы не тренировали специфично этот силовой показатель.

С ростом опыта и оттачиванием техники связан рост силы. Причем, в комплексных многосуставных упражнениях, где задействованы крупные мышечные группы эффект от тренировок больше, чем в небольших мышцах.

На этом графике видно как с ростом количества повторений (горизонтальная шкала) уменьшается доля ошибок в упражнении.

Мышечную силу оценивают по максимальной силе, развиваемой мышцей или группой мышц при сокращении. Слабость или неравномерный тонус мышц может мешать движению, и эти нарушения должны быть устранены в процессе медицинской реабилитации. Мышечная Сила зависит от целого ряда факторов: физиологических, биомеханических, нервно-мышечных. В зависимости от фазы заживления используются разные методы увеличения мышечной силы, так как в каждой из фаз различаются и задачи, и достижимые уровни работоспособности.

Максимальная сила, которую может развить мышца, напрямую зависит от физиологической площади поперечного сечения мышечных волокон: с увеличением диаметра мышцы растет и сила. На силу влияет также длина мышцы перед сокращением: мышца способна развить максимальную силу , если перед сокращением она находилась в расслабленном состоянии (сохраняла «длину покоя»), когда нити актина и миозина связаны максимальным числом поперечных мостиков (зона перекрывания актиновых и миозиновых нитей максимальна). По мере укорочения мышцы сила уменьшается, так как уменьшается и возможность миофиламентов сдвигаться далее относительно друг друга. При растяжении мышечных волокон до большей, чем в покое, длины сила уменьшается, но повышается пассивное напряжение. Таким образом, растяжение соединительной ткани фактически приводит к приросту силы. Следовательно, общая сила, развиваемая мышцей (включая активную сократительную силу и пассивное напряжение), увеличивается по мере удлинения мышцы.

Сила зависит от сократительных свойств мышечных волокон. Выделяют несколько типов мышечных волокон, различающихся силой и скоростью сокращения и устойчивостью к утомлению. Красные, или медленные, волокна характеризуются незначительной силой, но устойчивы к утомлению. Промежуточные и белые, или быстрые, волокна способны развивать значительное напряжение, но быстро утомляются. Таким образом, сила сокращения в значительной степени зависит от содержания в разных типов.

Очередность вовлечения мышечных волокон зависит от вида нагрузки. При не тяжелой нагрузке, требующей выносливости, первыми активируются мелкие мотонейроны, иннервирующие красные мышечные волокна. По мере того как потребность в силе возрастает, начинают активироваться крупные мотонейроны, иннервирующие белые мышечные волокна.

Помимо типа волокон на силу влияют скорость и тип мышечного сокращения. Наибольшая сила достигается при эксцентрических сокращениях, когда мышца, сокращаясь, удлиняется. По мере увеличения скорости сокращения начинает расти напряжение, отчасти вследствие усиления сухожильного рефлекса и растяжения последовательных упругих элементов. Концентрические сокращения всегда дают меньшую силу. По мере того как мышца укорачивается и скорость сокращения возрастает, отмечается снижение общего напряжения, так как мышце не хватает времени для развития силы. Существует обратная зависимость между скоростью укорочения мышцы при концентрических сокращениях и развиваемой ею силой. Чтобы мышечное сокращение достигло соответствующего напряжения и мышца не утомлялась, ей необходимы достаточные запасы энергии и хорошее кровоснабжение. На силу, развиваемую мышцей, влияет также характер спортсмена, так как выраженность мотивации и желание прикладывать усилие, чтобы развить максимальную силу , зависят от человека.

В основе увеличения мышечной силы лежат такие изменения, как гипертрофия и гиперплазия. Гипертрофия - это увеличение размеров мышечных волокон вследствие увеличения в них числа сократительных белков и миофибрилл и повышение плотности капиллярной сети, окружающей мышечные волокна. Возможен также прирост соединительнотканного компонента мышцы. Показано, что силовые упражнения с большим отягощением вызывают избирательную гипертрофию белых мышечных волокон. Начальный эффект силовых упражнений, вероятнее всего, основан не на структурных, а на функциональных изменениях - преимущественно на двигательном навыке, который сопровождается более активным вовлечением и лучшей синхронизацией двигательных единиц. Гиперплазия - это увеличение числа мышечных волокон за счет их продольного расщепления. Возможность гиперплазии у человека спорна, но она подтверждена у лабораторных животных, подвергавшихся интенсивной силовой тренировке.

Сила напрямую связана со степенью напряжения сокращающейся мышцы . Увеличение мышечной силы возможно только в том случае, если мышца будет испытывать все большие и большие перегрузки, превосходящие уровень ее аэробного метаболизма. Перегрузки создаются либо за счет увеличения сопротивления, либо за счет увеличения сокращений, либо за счет того и другого. В результате такой тренировки, вызывающей гипертрофию и активацию двигательных единиц, достигается повышение напряжения.

Наибольшая сила мышц достигается либо за счет наибольшего увеличения массы поднимаемого или перемещаемого груза, либо за счет возрастания ускорения, т. е. изменения скорости до максимальной величины. В первом случае увеличивается напряжение мышцы, а во втором - скорость ее сокращения. Движения у человека обычно происходят при сочетании сокращения мышц с их напряжением. Поэтому при возрастании скорости сокращения пропорционально увеличивается и напряжение. Чем больше масса груза, тем меньше сообщаемое ему человеком ускорение.

Максимальная сила мышцы измеряется определением массы максимального груза, который она может сместить. При таких изометрических условиях мышца почти не сокращается, а ее напряжение является предельным. Следовательно, степень напряжения мышцы - выражение ее силы.

Силовые движения характеризуются максимальным напряжением при увеличении массы груза и неизменной скорости его перемещения.

Сила мышцы не зависит от ее длины, а зависит главным образом от ее толщины, от физиологического поперечника, т. е. от количества мышечных волокон, приходящихся на наибольшую площадь ее поперечного сечения. Физиологическим поперечником называется площадь сечения всех мышечных волокон. У перистых и полуперистых мышц этот поперечник больше анатомического. У веретенообразных и параллельных мышц физиологический поперечник совпадает с анатомическим. Поэтому наиболее сильные перистые мышцы, затем полуперистые, веретенообразные и, наконец, наиболее слабые мышцы с параллельным ходом волокон. Сила мышцы зависит также от ее функционального состояния, от условий ее работы, от предельной частоты и величины, пространственной и временной суммации притекающих к ней нервных импульсов, вызывающих ее сокращение, количества функционирующих нейромоторных единиц и от импульсов, регулирующих . Сила мышц повышается при тренировке, снижается при голодании и утомлении. Вначале она увеличивается с возрастом, а затем к старости уменьшается.

Сила мышцы при максимальном ее напряжении, развиваемая при наибольшем ее возбуждении и наиболее выгодной длине до начала ее напряжения, называется абсолютной .

Абсолютная сила мышцы определяется в килограммах или ньютонах (Н). Максимальное напряжение мышцы у человека вызывается волевым усилием.

Относительная сила мышцы высчитывается следующим образом. Определив абсолютную силу в килограммах или ньютонах, делят ее на число квадратных сантиметров поперечного сечения мышцы. Это позволяет сравнить силу разных мышц одного и того же организма, силу одноименных мышц разных организмов, а также изменения силы одной и той же мышцы данного организма в зависимости от сдвигов ее функционального состояния. Относительная сила скелетной мышцы лягушки 2-3 кг, разгибателя шёи человека - 9 кг, жевательной мышцы - 10 кг, двуглавой мышцы плеча - 11 кг, трехглавой мышцы плеча - 17 кг.

Растяжимость и эластичность

Растяжимостью называется способность мышцы увеличивать длину при действии груза или силы. Растяжение мышцы зависит от массы груза. Чем больше груз, тем больше растягивается мышца. По мере возрастания груза требуется все больший груз или сила для получения одинакового прироста длины. Имеет значение и продолжительность действия груза. При приложении груза или силы в течение 1-2 с происходит удлинение мышцы (быстрая фаза), а затем ее растяжение замедляется и может продолжаться несколько часов (медленная фаза). Растяжимость зависит от функционального состояния мышцы. Красные мышцы растягиваются больше белых. Растяжимость зависит и от типа строения мышцы: параллельные мышцы растягиваются больше перистых.

Скелетные мышцы обладают эластичностью, или упругостью,- способностью возвращаться после деформации в исходное состояние. Эластичность, как и, растяжимость, зависит от функционального состояния, строения мышцы, ее вязкости. Восстановление исходной длины мышцы также происходит в 2 фазы: быстрая фаза продолжается 1-2 с, медленная фаза - десятки минут. Длина мышцы после растяжения, вызванного большим грузом или силой, и после длительного растяжения долго не возвращается к исходной. После кратковременного действия небольших грузов длина мышцы быстрее возвращается к исходной. Таким образом, для эластичности мышцы имеет значение степень и продолжительность ее растяжения. Эластичность мышцы малая, непостоянная и почти совершенная.

Длина анизотропных дисков при сокращении и пассивном растяжении не изменяется. Уменьшение длины мышечного волокна при сокращении и увеличение при его растяжении происходит вследствие изменения длины изотропных дисков. При укорочении волокна до 65% изотропные диски исчезают. Во время изометрического сокращения анизотропные диски укорачиваются, а изотропные удлиняются.

При сокращении увеличивается эластичность изотропных дисков, которые становятся почти в 2 раза длиннее анизотропных. Это предохраняет волокно от разрыва при очень быстром уменьшении длины анизотропных дисков, наступающем при изометрическом сокращении мышцы. Следовательно, растяжимостью обладают только изотропные диски.

Растяжимость увеличивается при утомлении пропорционально возрастанию утомления. Растяжение мышцы вызывает повышение ее обмена веществ и температуры. Гладкие мышцы растягиваются значительно больше, чем скелетные, в несколько раз больше своей первоначальной длины.

Эластичность мышцы уменьшается при контрактурах, при окоченении. В покое эластичность мышцы является свойством миофибрилл, саркоплазмы, сарколеммы и соединительнотканных прослоек, при сокращении - свойством сокращенных миофибрилл.

Растяжение гладких мышц до критического предела может происходить без изменения их напряжения. Это имеет большое физиологическое значение при растяжении гладкой мускулатуры полых органов, в которых при этом не изменяется давление. Например, давление в мочевом пузыре не изменяется при значительном растяжении его мочой.

Работоспособность мышц

Работа мышцы измеряется произведением массы поднятого ею груза на высоту его поднятия или на путь, следовательно, на высоту сокращения мышцы. Универсальной единицей работы, а также количества теплоты, является джоуль (Дж). Работоспособность мышцы изменяется в зависимости от ее физиологического состояния и нагрузки. При увеличении груза работа мышцы вначале увеличивается, а затем после достижения максимального значения уменьшается и доходит до нуля. Начальное увеличение работы при увеличении груза зависит от повышения способности мышцы возбуждаться и от прироста высоты сокращения. Последующее уменьшение работы зависит от понижения сократительной способности мышцы вследствие возрастающего растяжения грузом. Величина работы зависит от количества мышечных волокон и их длины. Чем больше поперечное сечение мышцы, чем она толще, тем больше груз, который она может поднять.

Перистая мышца может поднять большой груз, но так как длина ее волокон меньше длины всей мышцы, то она поднимает груз на сравнительно небольшую высоту. Параллельная мышца может поднять меньший груз, чем перистая, так как ее поперечное сечение меньше, но высота подъема груза больше, так как длина ее мышечных волокон больше. При условии возбуждения всех мышечных волокон высота сокращения мышц при прочих равных условиях тем больше, чем волокна длиннее. На величину работы влияет растяжение мышечных волокон грузом. Первоначальное растяжение небольшими грузами увеличивает высоту сокращения, а растяжение большими грузами уменьшает высоту сокращения мышцы. Работа мышцы зависит также от количества мионевральных аппаратов, от их расположения и от одновременного их возбуждения. При утомлении работа мышцы уменьшается и может прекратиться; высота сокращения мышцы по мере развития утомления понижается, а затем доходит до нуля.

Законы оптимальной нагрузки и оптимального ритма

Так как по мере увеличения груза уменьшается высота сокращения мышцы, то работа, являющаяся произведением груза и высоты, достигает наибольшей величины при некоторых средних нагрузках. Эти средние нагрузки называются оптимальными.

При прочих равных условиях при оптимальных нагрузках мышца сохраняет свою работоспособность наиболее продолжительное время. При оптимальной нагрузке работоспособность мышцы зависит от частоты ритма ее сокращений, т. е. от частоты равномерного чередования сокращений мышцы. Ритм сокращений мышцы при средней нагрузке, при которой сохраняется наиболее продолжительная работоспособность мышцы, называется оптимальным,

У разных мышц оптимальные нагрузки и оптимальный ритм неодинаковы. Они изменяются и у данной мышцы в зависимости от условий работы и ее физиологического состояния.

Оптимальная нагрузка и оптимальный ритм обусловлены прежде всего нервной системой (И. М. Сеченов). Что касается человека, то его умственная и физическая работоспособность определяется социальными условиями труда (орудиями труда, отношением к труду, эмоциями и др.). Оптимальная нагрузка и оптимальный ритм у человека значительно изменяются в зависимости от жизненного опыта, возраста, питания и тренированности.

Динамическая работа и статическое усилие

Работа скелетных мышц, обеспечивающая движения тела и его частей, называется динамической, а напряжение скелетных мышц, обеспечивающее поддержание тела в пространстве и преодоление земного притяжения, называется статическим усилием.

Динамическая работа различается по мощности. Измерителем мощности, или интенсивности, является работа, выполненная в единицу времени. Единица мощности - ватт (вт = 1 Дж/с). Между интенсивностью динамической работы и ее продолжительностью существует закономерное отношение. Чем больше интенсивность работы, тем меньше ее продолжительность. Различают работу малой, умеренной, большой, субмаксимальной и максимальной интенсивности. При динамической работе учитывается скорость, или быстрота движений. Для измерения быстроты движений используются: 1) время двигательной реакции, быстрота реагирования, или латентный период двигательного рефлекса, 2) продолжительность отдельного движения при минимальном напряжении мышц, 3) число движений в единицу времени, т. с. их частота.

Скорость движений зависит от характера и ритма импульсов из центральной нервной системы, от функциональных свойств мышц во время движений, а также от их строения. Способность производить мышечную деятельность определенного вида и интенсивности в течение наибольшего времени обозначается как выносливость. Чем больше выносливость, тем позднее начинается утомление.

Основные виды выносливости: 1) статическая - непрерывное, в течение предельного времени поддерживание напряжения скелетных мышц при постоянной силе давления или удерживании в постоянном положении определенного груза. Предельное время статического усилия тем меньше, чем больше сила давления или величина груза, 2) динамическая - непрерывное выполнение мышечной работы определенной интенсивности в течение предельного времени. Предельное время динамической работы скелетных мышц, зависит от ее мощности. Чем больше мощность, тем короче предельное время динамической выносливости.

Динамическая выносливость в большой степени зависит от повышения работоспособности внутренних органов, особенно сердечнососудистой и дыхательной систем.

Динамическая работа характеризуется также ловкостью.

Ловкость - это способность производить координированные движения с очень большой пространственной точностью и правильностью, быстро и в строго определенные, очень небольшие промежутки времени при внезапной перемене внешних условий.

Статическое усилие состоит в поддержании в течение некоторого времени напряжения мышц, т. е. в удержании веса тела, конечности или груза в неподвижном состоянии. В физическом смысле удерживание груза или тела в неподвижном состоянии не является работой, так как при этом отсутствует движение груза или веса тела. Примерами статических усилий являются неподвижное стояние, вис, упор, неподвижное держание руки, ноги или груза. Продолжительность статического усилия зависит от степени напряжения мышц. Чем меньше величина напряжения мышц, тем оно продолжительнее. При статических усилиях расходуется, как правило, значительно меньше энергии, чем при динамической работе. Расход энергии тем больше, чем тяжелее статическое усилие. Тренировка увеличивает продолжительность статических усилий.

Выносливость к статическим усилиям зависит не от повышения работоспособности внутренних органов, а главным образом от функциональной устойчивости двигательных центров к частоте и силе афферентных импульсов.



 

Возможно, будет полезно почитать: