Строение нервно мышечного синапса физиология. Виды синапсов. Синаптическая мембрана. Движение как основное свойство живого

Синапс (греч. synapsis - соединение) - это специализированная структура, обеспечивающая передачу сигнала от клетки к клетке. Посредством синапса реализуется действие многих фармакологических препаратов.

Структурно-функциональная организация. Каждый синапс имеет пре - и постсинаптическую мембраны и синаптическую щель (рис. 17).

Рис. 17. Нервно-мышечный синапс скелетной мышцы: 1 – ветвь аксона; 2 – пресинаптическое окончание аксона; 3 – митохондрия; 4 – синаптические пузырьки, содержащие ацетилхолин; 5 – синаптическая щель; 6 – молекулы медиатора в синаптической щели; 7 – постсинаптическая мембрана мышечного волокна с N-холинорецепторами

Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона. Через нее осуществляется выброс (экзоцитоз) медиатора (лат. mediator - посредник) в синаптическую щель. В нервно-мышечном синапсе медиатором является ацетилхолин. Медиатор пресинаптического окончания содержится в синаптических пузырьках (везикулах), диаметр которых составляет около 40 нм. Они образуются в комплексе Гольджи, с помощью быстрого аксонного транспорта доставляются в пресинаптическое окончание, где заполняются медиатором и АТФ. В пресинаптическом окончании содержится несколько тысяч везикул, в каждой из которых имеется от 1 тыс. до 10 тыс. молекул химического вещества.

Постсинаптическая мембрана (концевая пластинка в нервно-мышечном синапсе) - это часть клеточной мембраны иннервируемой мышечной клетки, содержащая рецепторы, способные связывать молекулы ацетилхолина. Особенность этой мембраны: множества мелких складок, увеличивающих ее площадь и количество рецепторов на ней до 10-20 млн в одном синапсе.

Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость, ацетилхолинэстеразу и мукополисахаридное плотное вещество в виде полосок, мостиков, в совокупности образующих базальную мембрану, соединяющую пре- и постсинаптическую мембраны.

Механизмы синаптической передачи включают три основных этапа (рис. 18).

Рис. 18. Механизм проведения импульса через химический синапс: 1-8 – этапы процесса (Чеснокова, 2007)

Первый этап - процесс выброса медиатора в синаптическую щель, который запускается посредством ПД пресинаптического окончания. Деполяризация его мембраны ведет к открытию потенциалуправляемых Са-каналов. Са 2+ входит в нервное окончание согласно электрохимическому градиенту. Часть медиатора в пресинаптическом окончании локализуется на пресинаптической мембране изнутри. Са 2+ активирует экзоцитозный аппарат пресинапса, представляющий собой совокупность белков (синапсин, спектрин и др.), пресинаптического окончания, активация которых обеспечивает выброс ацетилхолина посредством экзоцитоза в синаптическую щель. Количество высвобождаемого ацетилхолина из пресинаптического окончания пропорционально в четвертой степени количеству поступившего туда Са 2+ . На один ПД из пресинаптического окончания нервно-мышечного синапса выбрасывается 200-300 квантов (везикул) медиатора.

Второй этап - диффузия ацетилхолина в течение 0,1-0,2 мс к постсинаптической мембране и действие его на N-холинорецепторы (стимулируются также никотином, вследствие чего и получили свое название). Удаление ацетилхолина из синаптической щели осуществляется путем разрушения его под действием ацетилхолинэстеразы, расположенной в базальной мембране синаптической щели, в течение нескольких десятых долей миллисекунды. Около 60% холина захватывается обратно пресинаптическим окончанием, что делает синтез медиатора более экономичным, часть ацетилхолина рассеивается. В промежутках между ПД из пресинаптического окончания происходит спонтанное выделение 1- 2 квантов медиатора в синаптическую щель в течение 1 с, формируя так называемые миниатюрные потенциалы (0,4-0,8 мВ). Они поддерживают высокую возбудимость иннервируемой клетки в условиях функционального покоя и выполняют трофическую роль, а в ЦНС - способствуют поддержанию тонуса ее центров.

Третий этап - взаимодействие ацетилхолина с N-холинорецепторами постсинаптической мембраны, в результате чего открываются ионные каналы на 1 мс и, вследствие преобладания входа N + в клетку, происходит деполяризация постсинаптичедкой мембраны (концевой пластинки). Эту деполяризацию в нервно-мышечном синапсе называют потенциалом концевой пластинки (ПКП) (рис. 19).

Особенностью нервно-мышечного синапса скелетного мышечного волокна является то, что при одиночной его активации формируется ПКП большой амплитуды (30-40 мВ), электрическое поле которого вызывает генерацию ПД на мембране мышечного волокна вблизи синапса. Большая амплитуда ПКП обусловлена тем, что нервные окончания делятся на многочисленные веточки, каждая из которых выбрасывает медиатор.

Рис. 19. Потенциал концевой пластинки (Шмидт, 1985): КП – критический потенциал; ПД – потенциал действия; А – ПКП в нормальной мышце; Б – ослабленный ПКП в курарезированной мышце; стрелками указан момент нанесения стимула

Характеристика проведения возбуждения в химических синапсах . Одностороннее проведение возбуждения от нервного волокна к нервной или эффекторной клетке, так как пресинаптическое окончание чувствительно только к нервному импульсу, а постсинаптическая мембрана - к медиатору.

Неизолированное - возбуждение рядом расположенных постсинаптических мембран суммируется.

Синаптическая задержка в передаче сигнала к другой клетке (в нервно-мышечном синапсе 0,5-1,0 мс), что связано с высвобождением медиатора из нервного окончания диффузией его к постсинаптической мембране и возникновением постсинаптических потенциалов, способных вызвать ПД.

Декрементность (затухание ) возбуждения в химических синапсах при недостаточном выделении медиатора из пресинаптических окончаний в синаптические щели.

Низкая лабильность (в нервно-мышечном синапсе составляет 100 Гц), которая в 4 - 8 раз ниже лабильности нервного волокна. Это объясняется синаптической задержкой.

Проводимость нервно-мышечного синапса (как и химических синапсов ЦНС) угнетается или, наоборот, стимулируется различными веществами .

Например, кураре и курареподобные вещества (диплацин, тубокурарин) обратимо связываются с N-холинорецепторами постсинаптической мембраны, блокируют действие на нее ацетилхолина и передачу в синапсе. Напротив, некоторые фармакологические препараты, например прозерин, подавляют активность ацетилхолинэстеразы, способствуя умеренному накоплению ацетилхолина и облегчению синаптической передачи, что используется в лечебной практике.

Утомляемость (синаптическая депрессия) - ухудшение проводимости вплоть до полной блокады проведения возбуждения при длительном функционировании синапса (главная причина - истощение медиатора в пресинаптическом окончании).

Вопросы для самоконтроля

1.Каков механизм распространения возбуждения по нервному волокну? Какова роль перехватов Ранвье в проведении возбуждения по миелинизированному нервному волокну?

2.В чем преимущество скачкообразного (сальтаторного) распространения возбуждения над непрерывным его проведением вдоль мембраны волокна?

3.В чем физиологическое значение изолированного проведения возбуждения по нервному волокну?

4.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе А? Какова скорость проведения возбуждения по ним?

5.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе В? Какова скорость проведения по ним?

6.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе С? Какова скорость проведения возбуждения по ним?

7.Перечислите структуры нервно-мышечного синапса (скелетная мышца). Что называют концевой пластинкой?

8.Перечислите последовательность процессов, ведущих к освобождению медиатора из пресинаптической мембраны в синаптическую щель при передаче возбуждения в синапсе.

9. Локальным потенциалом или распространяющимся возбуждением является потенциал концевой пластинки?

10.Что такое миниатюрные потенциалы концевой пластинки, каков механизм их возникновения?

11.В чем заключается трофическое влияние нерва на мышцу, осуществляемое через нервно-мышечный синапс?

12.Какие вещества являются медиаторами в нервно-мышечных синапсах гладкой и поперечнополосатой мышц?

13.Что такое сенсорный рецептор?

14.На какие две группы делятся сенсорные рецепторы по скорости адаптации? Назовите рецепторы, относящиеся к каждой из них.

15.Что понимают под первичными и вторичными рецепторами?

16.Перечислите основные свойства рецепторов.

17.Что называют адаптацией рецепторов? Как изменяется частота импульсов в афферентном нервном волокне при адаптации рецептора?

18.Назовите локальные потенциалы, возникающие при возбуждении первичных и вторичных рецепторов.

19.Рецепторный потенциал, где он возникает, каково его значение?

20.Генераторный потенциал, где он возникает, каково его значение?

21.Где возникает потенциал действия при возбуждении первичного сенсорного рецептора?

22. Где возникает потенциал действия при возбуждении вторичного сенсорного рецептора?

Физиология мышц

1.3.1. Структурно­функциональная характеристика скелетной мышцы

Мышцы подразделяют на поперечнопо­лосатые (скелетная и сердечная ) и гладкие (сосуды и внутренние органы, кроме сердца).

Скелетная мышца состоит из мышечных волокон , изолированных в структурном и функциональном отношении друг от Друга, которые представляют собой вытянутые многоядерные клетки. Толщина волокна составляет 10-100 мкм, а его длина варьирует в пределах от нескольких миллиметров до нескольких сантиметров. Количество мышечных волокон, установившись постоянным на 4-5-м месяце постнатального онтогенеза, в последующем не изменяется; с возрастом изменяются (увеличиваются) лишь их длина и диаметр.

Назначение основных структурных элементов. Характеристика основных элементов мышечного волокна. От клеточной мембраны мышечного волокна (сарколеммы) вглубь отходят многочисленные поперечные инвагинации (Т-трубочки ), которые обеспечивают ее взаимодействие с саркоплазматическим ретикулулом (СПР ) (рис. 20).

Рис. 20. Взаимоотношение клеточной мембраны (1), поперечных трубочек (2), боковых цистерн (3) и продольных трубочек (4) саркоплпзматическаого ретикулума, сократительных белков (5): А – в состоянии покоя; Б – при сокращении мышечного волокна; точками обозначены ионы Ca 2+

СПР представляет собой систему связанных друг с другом цистерн и отходящих от них в продольном направлении канальцев, расположенных между миофибриллами. Терминальные (концевые) цистерны СПР примыкают к Т-трубочкам, формируя так называемые триады . В цистернах содержится Са 2+ , играющий важную роль в мышечном сокращении. В саркоплазме имеются внутриклеточные элементы: ядра, митохондрии, белки (в том числе миоглобин), капельки жира, гранулы гликогена, фосфатсодержащие вещества, различные малые молекулы и электролиты.

Миоибриллы - субъединицы мышечного волокна. В одном мышечном волокне может насчитываться более 2 тыс. миофибрилл, их диаметр 1-2 мкм. В одиночной миофибрилле содержится 2-2,5 тыс. протофибрилл - параллельно расположенных нитей белка (тонкие - актин, толстые - миозин ). Актиновые нити состоят из двух субъединиц, скрученных в виде спирали. В состав тонких нитей входят также регуляторные белки - тропомиозин и тропонин (рис. 21).

Рис. 21. Взаимное расположение структурных элементов миофибрилл при их расслаблении (А,Б) и сокращении (В)

Эти белки в невозбужденной мышце препятствуют взаимосвязи актина и миозина, поэтому мышца в покое находится в расслабленном состоянии. Миофибриллы включают в себя последовательно соединенные блоки - саркомеры (Б), отделенные друг от друга Z-полосками. Саркомер (длина 2-Змкм) является сократительной единицей мышечного волокна; при длине 5см оно включает в себя около 20 тыс. последовательно соединенных саркомеров. Миофибриллы отдельного мышечного волокна связаны таким образом, что расположение саркомеров совпадает, и это создает картину поперечной исчерченности волокна при наблюдении в световом микроскопе (рис. 22).

Рис. 22. Саркомер миоцита скелетной мышцы (A. Vander, J. Sherman, D. Luciano, 2004)

Элементы саркoмера (см. рис. 21). Миозиновые протофибриллы образуют наиболее темную часть саркомера - А-диск (анизотропный, он сильно поляризует белый свет). Более светлый участок в центре А-диска называют Н-зоной . Светлый участок саркомера между двумя А-дисками называют 1-диском (изотропный, почти не поляризует свет). Он образован актиновыми протофибриллами, идущими в обе стороны от Z-полосок. Каждый саркомер имеет два набора тонких нитей, прикрепленных к Z-полоскам, и один комплект толстых нитей, сосредоточенных в А-диске. В расслабленной мышце концы толстых и тонких филаментов в разной степени перекрывают друг друга на границе между А- и 1-дисками.

Классификация мышечных волокон:

По структурно-функциональным свойствам и цвету выделяют две основные группы мышечных волокон: быстрые и медленные.

Белые (быстрые) мышечные волокна содержат больше миофибрилл и меньше - митохондрий, миоглобина и жиров, но больше гликогена и гликолитических ферментов; эти волокна называют гликолитическими . Капиллярная сеть, окружающая эти волокна, относительно редкая. Скорость рабочего цикла у данных волокон примерно в 4 раза больше, чем у медленных, что объясняется более высокой АТФазной активностью быстрых волокон, но они обладают малой выносливостью. У белых мышечных волокон число нитей актина и миозина больше, чем у красных, поэтому они толще и сила их сокращения больше, чем у красных волокон.

Красные мышечные волокна содержат много митохондрий, миоглобина , жирных кислот. Эти волокна окружены густой сетью кровеносных капилляров, они имеют меньший диаметр. Митохондрии обеспечивают высокий уровень окислительного фосфорилирования, поэтому данные волокна называют оксидативными. Красные мышечные волокна подразделяются на две подгруппы: быстрые и медленные . Медленные волокна могут выполнять работу в течение относительно продолжительного периода времени; утомление в них развивается медленнее. Они более приспособлены к тоническим сокращениям. Красные быстрые волокна по скорости утомления занимают промежуточное положение между белыми и красными медленными. Скорость их сокращения близка к скорости сокращения белых волокон, что также объясняется высокой АТФазной активностью миозина красных быстрых волокон.

Также имеется незначительное число истинных тонических мышечных волокон; на них локализуется по 7-10 синапсов, принадлежащих, как правило, нескольким мотонейронам, например, в глазодвигательных мышцах, мышцах среднего уха. ПКП этих мышечных волокон не вызывают генерации ПД в них, а непосредственно запускают мышечное сокращение.

Группа мышечных волокон, двигательную (нейромоторную) единицу. В мышцах, совершающих быстрые и точные движения, например в глазодвигательных, нейромоторные единицы состоят из 3-5 мышечных волокон. В мышцах, осуществляющих менее точные движения (например, мышцы туловища и конечностей), двигательные единицы включают сотни и тысячи мышечных волокон. Большая двигательная единица, по сравнению с малой, включает крупный мотонейрон с относительно толстым аксоном, который образует большое число концевых веточек в мышце и, следовательно, иннервирует большое число мышечных волокон. Все мышечные волокна одной двигательной единицы, независимо от их количества, относятся к одному типу. Все скелетные мышцы по своему составу являются смешанными, т.е. образованы красными и белыми мышечными волокнами.

Специфическим свойством всех мышц является сократимость - способность сокращаться, т.е. укорачиваться или развивать напряжение. Реализация этой способности осуществляется с помощью возбуждения и его проведения по мышечному волокну (свойства соответственно возбудимости и проводимости).

Скелетные мышцы не обладают автоматией, управляются организмом произвольно импульсацией из ЦНС, поэтому их называют также произвольными . Гладкие мышцы по собственному желанию не сокращаются, поэтому их называют также непроизвольными, но они обладают автоматией.

Функции скелетной мышцы :

Обеспечение двигательной активности организма - поиск и добывание воды и пищи, ее захват, жевание, глотание, оборонительные реакции, трудовая деятельность - физическая и творческая работа художника, писателя, ученого, композитора в конечном итоге выражается в движении: рисование, письмо, игра на музыкальном инструменте и т.п.

Обеспечение дыхания (движений грудной клетки и диафрагмы).

Коммуникативная функция (устная и письменная речь, мимика и жесты).

Участие в процессах терморегуляции организма с помощью изменения интенсивности сократительного термогенеза.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15

Нервное волокно непосредственно не контактирует с мышечным. Между ними очень узкая щель (20-50 нм). Нервное окончание, часть мышечного волокна, к которой прилегает это окончание, и щель между ними составляют нервно-мышечный синапс. Нервное волокно заканчивается синаптической бляшкой, в которой содержатся Мтохондрии и значительное количество (около 300 тыс.) пузырьков, где концентрируется медиатор - вещество, с помощью которой возбуждение распространяется с нерва на мышцу. В нервно-мышечном синапсе этим медиатором является ацетилхолин. Синтез ацетилхолина происходит в синаптической бляшке и требует энергетических затрат. Часть бляшки, прилегающей к щели, называется пресинаптической мембраной. С другой стороны щели расположен постсинаптическая мембрана, которая принадлежит мышечному волокну. Часть этой мембраны, которая непосредственно прилегает к бляшки, называется конечной пластинкой.
В состав постсинаптической мембраны входят рецепторные белки (молекулярная масса - около 275 000), которые реагируют на ацетилхолин и называются холинорецепторами. Они реагируют также на никотин, отсюда их название - Н-холинорецепторы. Реакция ацетилхолина с Н-холинорецепторы приводит конформационные изменения молекулы рецептора. Это влияет на рядом расположенный хемочутливий ионный канал, который может пропускать Na +, К +, Са2 +. Белковые структуры этих каналов имеют отрицательный заряд, и поэтому анионы через них не проходят.
Передача информации через нервно-мышечный синапс происходит в такой последовательности:
1. Нервным волокном в бляшки приходит ПД.
2. Вследствие действия ПД на мембрану нервного окончания открываются Са2 +-каналы и эти ионы вступают в бляшку.
3. Повышение в бляшке концентрации Са2 + приводит (при участии кальмодулина) до выхода медиатора из пузырьков в синаптическую щель. Вследствие действия единичного ПД медиатор выходит примерно из 300 пузырьков.
4. Ацетилхолин диффундирует через щель.
5. Ацетилхолин реагирует с Н-холинорецепторы.
6. Открываются «ворота» хемочутливих каналов и за концентрационным градиентом Na + переходит в мышечное волокно, а К + - наружу.
7. Происходит деполяризация концевой пластинки и развивается ее потенциал (ПКП). ПКП-один из видов местного возбуждения. Чем больше выделяется ацетилхолина, то в большей степени выражен этот потенциал.
8. Когда ЛКП достигает критической величины (ЕКС), деполяризуется колосинаптична електрозбудлива мембрана и развивается
ПД мышечного волокна, которое распространяется по обе стороны синапса. В этом процессе участвуют потенциалзависимые ионные каналы.
Ацетилхолин выделяется в незначительном количестве даже тогда, когда ПД нервными волокнами не поступает. Даже в таком количестве (кванты медиатора) он обуславливает незначительную деполяризацию постсинаптической мембраны (доли мВ), которая имеет название миниатюрных потенциалов концевой пластинки (МПКП).
Ацетилхолин, выделившегося в синаптическую щель, очень быстро разрушается ферментом ацетилхолинэстеразой. Вследствие этого образуется холин, который попадает в синаптическую бляшку и участвует в создании новых порций ацетилхолина.
Передача информации в нервно-мышечном синапсе происходит в одном направлении, с определенной задержкой (около 0,5 мс). При слишком частых и длительных раздражениях могут наступать истощение запасов ацетилхолина и усталость, являются методы усиления или ослабления нередачи импульсов нервно-мышечных синапсов. Так, усилить передачу их можно с помощью заменителей ацетилхолина-холиномиметическим средств (например, карбахолин) или путем инактивации ацетилхолинэстеразы (езерин, физостигмин). В этом случае медиатор не разрушается, его действие усиливается и продлевается.
Ослабить или прекратить передачу можно при введении курареподобных веществ - миорелаксантов (например тубокурарина, диплацина). Эти препараты связываются с холинорецепторами и блокируют действие ацетилхолина.

Синапс- специализированные структуры, которые обеспечивают передачу возбуждения с одной возбудимой клетки на другую. Понятие СИНАПС введено в физиологию Ч.Шеррингтоном (соединение, контакт). Синапс обеспечивает функциональную связь между отдельными клетками. Подразделяются на нервно-нервные, нервно-мышечные и синапсы нервных клеток с секреторными клетками (нервно-железистые). В нейроне выделяется три функциональных отдела: сома, дендрит, аксон. Поэтому между нейронами существуют все возможные комбинации контактов. Например, аксо-аксональный, аксо-соматический и аксо-дендритный.

Классификация.

1)по местоположению и принадлежности соответствующим структурам:

- периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

- центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2)механизму действия- возбуждающие и тормозящие;

3)способу передачи сигналов- химические, электрические, смешанные.

4)химические классифицируют по медиатору, с помощью которого осуществляется передача- холинергические, адренергические, серотонинергические, глицинергически. и т.д.

Строение синапса.

Синапс состоит из следующих основных элементов:

Пресинаптической мембраны (в нервно-мышечном синапсе - это концевая пластинка):

Постсинаптической мембраны;

Синаптической щели. Синаптическая щель заполнена олигосахаридсодержащей соединительной тканью, которая играет роль поддерживающей структуры для обеих контактирующих клеток.

Систему синтеза и освобождения медиатора.

Систему его инактивации.

В нервно-мышечном синапсе пресиниптическая мембрана-часть мембраны нервного окончания в области контакта его с мышечным волокном, постсинаптическая мембрана- часть мембраны мышечного волокна.

Строение нервно-мышечного синапса.

1 -миелинизированное нервное волокно;

2 -нервное окончание с пузырьками медиатора;

3 -субсинаптическая мембрана мышечного волокна;

4 -синаптическая щель;

5-постсинаптическая мембрана мышечного волокна;

6 -миофибриллы;

7 -саркоплазма;

8 -потенциал действия нервного волокна;

9 -потенциал концевой пластинки (ВПСП):

10 -потенциал действия мышечного волокна.

Часть постсинаптической мембраны, которая расположена напротив пресинаптической, называется субсинаптической мембраной. Особенностью субсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору и наличие хемозависимых каналов. В постсинаптической мембране, за пределами субсинаптической, имеются потенциалозависимые каналы.

Механизм передачи возбуждения в химических возбуждающих синапсах . В 1936 году Дейл доказал, что при раздражении двигательного нерва в его окончаниях в скелетной мышце выделяется ацетилхолин. В синапсах с химической передачей возбуждение передается с помощью медиаторов (посредников) .Медиаторы – химическкие вещества, которые обеспечивают передачу возбуждения в синапсах. Медиатором в нервно-мышечном синапсе является ацетилхолин, в возбуждающих и тормозных нервно-нервных синапсах - ацетилхолин, катехоламины - адреналин, норадреналин, дофамин; серотонин; нейтральные аминокислоты - глутаминовая, аспарагиновая; кислые аминокислоты - глицин, гамма-аминомасляная кислота; полипептиды: вещество Р, энкефалин, соматостатин; другие вещества: АТФ, гистамин, простагландины.

Медиаторы в зависимости от их природы делятся на несколько групп:

Моноамины (ацетилхолин, дофамин, норадреналин,серотонин.);

Аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.);

Нейропептиды (вещество Р, эндорфины, нейротензин, АКТГ,ангиотензин, вазопрессин, соматостатин и др.) .

Накопление медиатора в пресинаптическом образовании происходит за счет его транспорта из околоядерной области нейрона с помощью быстрого акстока; синтеза медиатора, протекающего в синаптических терминалях из продуктов его расщепления; обратного захвата медиатора из синаптическои щели.

Пресинаптическое нервное окончание содержит структуры для синтеза нейромедиатора. После синтеза нейромедиатор упаковывается в везикулы. При возбуждении эти синаптические везикулы сливаются с пресинаптической мембраной и нейромедиатор высвобождается в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором. В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов и деполяризуется. Это приводит к возникновению возбуждающего постсинаптического потенциала и затем потенциала действия. Медиатор синтезируется в пресинаптической терминали из материала, поступающего сюда аксональным транспортом. Медиатор "инактивируется", т.е. либо расщепляется, либо удаляется из синаптической щели посредством механизма обратного транспорта в пресинаптическую терминаль.

Значение ионов кальция в секреции медиатора .

Секреция медиатора невозможна без участия в этом процессе ионов кальция. При деполяризации пресинаптической мембраны кальций входит в пресинаптическую терминаль через специфические потенциалозависимые кальциевые каналы в этой мембране. Концентрация кальция в аксоплазме 110 -7 М, при вхождении кальция и повышения его концентрации до 110 - 4 М происходит секреция медиатора. Концентрация кальция в аксоплазме после окончания возбуждения снижается работой систем: активного транспорта из терминали, поглощением митохондриями, связыванием внутриклеточными буферными системами. В состоянии покоя происходит нерегулярное опорожнение везикул, при этом происходит выход не только единичных молекул медиатора, но и выброс порций, квантов медиатора. Квант ацетилхолина включает примерно 10000 молекул.


Нервно-мышечный синапс - соединение концевой ветви аксона мотонейрона спинного мозга с мышечной клеткой. Соединение состоит из предсинаптических структур, образованных концевыми ветвями аксона мотонейрона и постсинаптических структур, образованных мышечной клеткой. Предсинаптические и постсинаптические структуры разделены синаптической щелью. (Предсинаптические структуры: концевая ветвь аксона, концевая пластинка концевой ветви (аналог синаптической бляшки), предсинаптическая мембрана (концевой пластинки).

Постсинаптические структуры: постсинаптическая мембрана (мышечной клетки), субсинаптическая мембрана (постсинаптической мембраны). По структуре и функции нервно-мышечный синапс является типичным химическим синапсом.

Синапсы могут быть между двумя нейронами (межнейронные), между нейроном и мышечным волокном (нервно-мышечные), между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные), между отростками нейрона и другими клетками (железистыми).

В зависимости от локализации, функции, способа передачи возбуждения и природы медиатора, синапсы делятся на центральные и периферические, возбуждающие и тормозные, химические, электрические, смешанные, холинергические или адренергические.

Синапс адренергический - синапс, медиатором в котором является норадреналин. Различают α1-, β1-, и β2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение α- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; β1- адренореактивных синапсов - усиление работы сердца; β2 - адренореактивных - расширение бронхов.

Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс химический - в нем возбуждение от пре- к постсинаптической мембране передается с помощью медиатора. Передача возбуждения через синапс химический отличается большей специализированностью, чем через синапс электрический.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной

1. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше;

2. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

Синапс межнейронный - синапс между двумя нейронами. Различают аксо-аксональные, аксо-соматические, аксо-дендрические и дендро-дендрические синапсы.

Синапс нервно-мышечный - синапс между аксоном мотонейрона и мышечным волокном.

Несмотря на определенные морфологические и функциональные различия (о чем сказано выше), общие принципы ультраструктуры синапсов одинаковы.

Синапс состоит из трех основных частей: пресинаптической мембраны, постсинаптической мембраны и синаптической щели.

Окончание аксона двигательного нейрона разветвляется на множество концевых нервных веточек, не имеющих миелиновой оболочки. Утолщенное окончание пресинаптического аксона (его мембраны) и составляет пресинаптическую мембрану синапса. Пресинаптическое окончание содержит митохондрии, которые поставляют АТФ, а также множество субмикроскопических образований - пресинаптических пузырьков, величиной 20 - 60 нм, состоящих из мембраны, содержащей медиатор. Пресинаптические пузырьки необходимы для накопления медиатора. В нервно-мышечном синапсе ветвления нервного волокна вдавливают мембрану мышечного волокна, которая в этом участке образует сильноскладчатую постсинаптическую мембрану или двигательную концевую пластинку.

Между пресинаптической и постсинаптической мембранами расположена синаптическая щель, ширина которой составляет 50 - 100 нм.

Область мышечного волокна, участвующую в образовании синапса, называют концевой двигательной пластинкой или постсинаптической мембраной синапса.

Передатчиком возбуждения, пришедшего по нервным окончаниям в нервно-мышечный синапс, служит медиатор ацетилхолин .

Когда под действием нервного импульса (потенциала действия) происходит деполяризация мембраны нервного окончания, пресинаптические пузырьки вплотную сливаются с ней. При этом в одной из точек пресинаптической мембраны возникает все увеличивающееся отверстие, через которое в синаптическую щель выбрасывается содержимое пузырька (ацетилхолин).

Ацетилхолин выбрасывается порциями (квантами) по 4 10 4 молекул, что соответствует содержимому нескольких пузырьков. Один нервный импульс вызывает синхронное выделение 100-200 порций медиатора менее чем за 1 мс. Всего же запасов ацетилхолина в окончании хватает на 2500-5000 импульсов.

Таким образом, основное назначение пресинаптической мембраны состоит в синтезе и регулируемом нервным импульсом выбросе медиатора ацетилхолина в синаптическую щель.

Молекулы ацетилхолина диффундируют через щель и достигают постсинаптической мембраны. Последняя обладает высокой чувствительностью к медиатору и невозбудима по отношению к электрическому току. Высокая чувствительность мембраны к медиатору обусловлена тем, что в ней находятся специфические рецепторы - молекулы липопротеиновой природы. Число рецепторов - их называют холинорецепторами - составляет примерно 13000 на 1мкм 2 ; они отсутствуют в других участках мышечной мембраны. Взаимодействие медиатора с рецептором (две молекулы ацетилхолина взаимодействуют с одной молекулой рецептора) вызывает изменение конформации последнего в результате чего открываются хемовозбудимые ионные каналы в мембране. Происходит перемещение ионов (поток Nа+ внутрь намного превышает выход К+ наружу, в клетку поступают ионы Са++) и возникает деполяризация постсинаптической мембраны от 75 до 10 мВ. Возникает потенциал концевой пластинки (ПКП) или возбуждающий постсинаптический потенциал (ВПСП).

Время от момента появления нервного импульса в пресинаптическом окончании до возникновения ПКП называется синаптической задержкой . Она составляет 0,2-0,5 мс.

Величина ПКП зависит от числа молекул ацетилхолина, связанных с рецепторами постсинаптической мембраны, т.е. в отличие от потенциала действия ПКП градуален.

Для восстановления возбудимости постсинаптической мембраны необходимо исключить действие деполяризирующего агента - ацетилхолина. Эту функцию выполняет локализованный в синаптической щели фермент ацетилхолинэстераза , которая гидролизует ацетилхолин до ацетата и холина. Проницаемость мембраны возвращается к исходному уровню, и мембрана реполяризуется. Этот процесс идет очень быстро: весь выделившийся в щель ацетилхолин расщепляется за 20 мс. Некоторые фармакологические или токсические агенты (алколоид физостигмин, органические фторфосфаты), ингибируя ацетилхолинэстеразу, удлиняют период ПКП, что вызывает длительные и частые потенциалы действия и спастические сокращения мышц в ответ на одиночные импульсы мотонейронов. Образовавшиеся продукты расщепления - ацетилхолин - большей частью транспортируется обратно в пресинаптические окончания, где используются в ресинтезе ацетилхолина при участии фермента холин-ацетилтрансферазы.

Ацетилхолин выделяется не только под влиянием нервного импульса, но и в покое. В этом случае он выделяется спонтанно в очень небольшом количестве. В результате этого начинается незначительная деполяризация постсинаптической мембраны. Такая деполяризация получила названиеминиатюрных постсинаптических потенциалов , т.к. они по своей величине не превышают 0,5 мВ.

В гладких мышцах нервно-мышечные синапсы построены проще, чем в скелетных. Тонкие пучки аксонов и их одиночные веточки, следуя между мышечными клетками, образуют расширения, содержащие пресинаптические пузырьки с медиатором ацетилхолином или норадреналином.

В гладких мышцах передача возбуждения в нервно-мышечном синапсе осуществляется разными медиаторами. Например, для мышц желудочно-кишечного тракта, бронхов, медиатором служит ацетилхолин, а для мышц кровеносных сосудов - норадреналин. Гладкие мышцы кровеносных сосудов на постсинаптической мембране имеют два вида рецепторов: α-адренорецепторы и β-адренорецепторы. Стимуляция α-адренорецепторов ведет к сокращению гладких мышц сосудов, а стимуляция β-адренорецепторов опосредует расслабление сосудистых гладких мышц. По нервным волокнам к гладким мышцам поступают редкие импульсы, примерно не чаще 5-7 имп/с. При более частых, например, свыше сорока - пятидесяти импульсов в секунду, наступает торможение пессимального типа. Гладкие мышцы иннервируются возбуждающими и тормозными нервами. Из окончаний тормозных нервов выделяются тормозные медиаторы, взаимодействующие с рецепторами постсимпатической мембраны. В гладких мышцах, возбуждаемых ацетилхолином, тормозным медиатором служит норадреналин, а для возбуждаемых норадреналином тормозным медиатором является ацетилхолин.

Возникновение и передача возбуждения в рецепторах

Рецепторы по происхождению могут быть первичными (первичночувствующими) и вторичными (вторичночувствующими). В первичных рецепторах воздействие воспринимается непосредственно свободными или несвободными (более специализированными) нервными окончаниями чувствительных нейронов (рецепторы кожи, скелетных мышц, внутренних органов, органов обоняния).

Во вторичных рецепторах между раздражителем и окончанием чувствительного нейрона располагаются специализированные рецепторные клетки эпителиальной или глиальной природы.

Механизм генерации нервного импульса в рецепторах и его передачи по нервному волокну как в первичных, так и во вторичных рецепторах одинаков, хотя форма взаимодействия адекватного раздражителя с мембраной рецептора может быть различной (деформация мембраны у механорецепторов, возбуждение квантами света фотопигмента мембраны у фоторецепторов и т.п.). Однако во всех случаях это приводит к одному результату: повышению ионной проницаемости мембраны, проникновению натрия внутрь клетки, деполяризации мембраны и генерации так называемого рецепторного потенциала (РП).

Местом возникновения РП может быть либо само нервное окончание (в первичных рецепторах), либо отдельные рецепторные клетки, образующие с чувствительными окончаниями химические синапсы (во вторичных рецепторах).

Рецепторный потенциал проявляется в снижении мембранного потенциала покоя, т.е. частичной деполяризации мембраны (с 80 до - 30 мВ). Это снижение потенциала строго локально и оно возникает только в том участке мембраны, где действует раздражитель, пропорционально его интенсивности. В первичных рецепторах РП, превысивший пороговозбуждения, трансформируется в потенциал действия нервного волокна. Во вторичных рецепторах РП вызывает высвобождение химического медиатора, деполяризующего мембрану постсинаптического нервного волокна. В последнем возникает генераторный потенциал, переходящий в потенциал действия.

В принципе возникновение и передача возбуждения в рецепторах осуществляется тем же механизмом и в той же последовательности, что и в нервно-мышечном синапсе.

Однако возникающие здесь нервные импульсы распространяются центростремительно и несут информацию в анализирующие (сенсорные) центры ЦНС.

Всем рецепторам присуще свойство адаптации к действию раздражителя. Скорость адаптации у разных рецепторов различна. Одни из них (рецепторы прикосновения) адаптируются очень быстро, другие (хеморецепторы сосудов, рецепторы растяжения мышц) - очень медленно.



Физиология нервов.
Центральная нервная система у человека состоит из нервных клеток, каждая из которых имеет один аксон и много дендритов. Нервные волокна делятся на: мякотные и безмякотные. Все они имеют шванновскую оболочку, а мякотные, кроме этого, покрыты еще миелиновой оболочкой между которой имеются перехваты Ранвье, в которых миелиновая оболочка отсутствует. Безмякотные волокна имееют малый диаметр, меньше 1,3 мкм, небольшую скорость распространения импульса до 2 м/сек, продолжительность ПД – 2 мсек. Мякотные возникли из безмякотных, диаметр до 25 мкм, скорость распространения возбуждения до 120 м/сек, продолжительность ПД – 0,4-0,5 мсек.

Распространение ПД по безмякотному волокну: немецкий физиолог Герман предложил теорию «местных токов», согласно которой при распространении возбуждения на мембране нервного волокна между возбужденным и невозбужденным участком возникает местный ток, который является раздражителем для невозбужденного участка. Если его величина достаточна для возникновения ПД в соседнем участке, то ПД распространяется на этот участок.
Распространение местных токов в безмякотных нервных волокнах прямопропорционально сопротивлению мембраны и обратнопропорционально сопротивлению внутри- и внеклеточной среды. Расстояние на которое распространяются местные токи будет тем больше, чем больше амплитуда ПД и чем меньше пороговый потенциал.
В мякотных волокнах возбуждение возникает при нанесении раздражения в перехватах Ранвье (теория Тасаки) и распространяется по мембране волокна сальтаторно (скачкообразно) (рис.1).

Рисунок 1. Проведение возбуждения по миелиновому нервному волокну.

При этом может охватывать не только один, но и два перехвата Ранвье, что обеспечивает надежность, а также увеличивает скорость распространения возбуждения и экономически более выгодна, так как на 1 импульс в безмякотном волокне энергия расходуется в 20 раз больше, чем в мякотном. Таким образом, скорость и расстояние, на которое распространяется возбуждение в безмякотных волокнах пропорциональна диаметру, сопротивлению мембраны и амплитуде ПД; в мякотных прямопропорциональна длине межперехватных участков, а их длина тем больше, чем больше диаметр волокна. Скорость не зависит от силы раздражения.
Теория Германа была экспериментально подтверждена.
Гельмгольц – определил скорость распространения импульса у лягушки; Бабский – определил скорость распространения импульса у человека. Эрландер и Гассер классифицировали различные нервные волокна на три группы А, В и С:

Типы нервных волокон
А – миелинизированные, наибольшего диаметра, скорость 120-70 м в сек, длительность ПД – минимальная, делятся на подгруппы: альфа, бета, гамма, дельта. Пример – аксоны мотонейронов.
В – миелинизированные волокна, меньшего диаметра, скорость 3-18 м в сек, ПД более длителен. Пример – преганглионарные волокна симпатической нервной системы.
С – немиелизированные нервные волокна, скорость менее 2 м в сек, длительность ПД наибольшая. Пример - постганглионарные волокна парасимпатической нервной системы.

Законы проведение возбуждения по нервам.
I закон анатомо-физиологический целостности нервного волокна . Чтобы возбуждение распространялось по нервному волокну необходимо не только его морфологическая целостность, но и физиологическая непрерывность. Препараты для проводниковой анестезии нарушают физиологическую непрерывность тем, что инактивируют натриевую проницаемость в нервных волокнах.
II закон изолированного проведения возбуждения по нервному волокну . В смешанном нерве возбуждение с одного нервного волокна не передается на соседние, так как сопротивление межклеточной жидкости меньше чем сопротивление мембран соседних волокон. Этим обеспечив ается точность проведения информации в нервных волокнах к иннервируемым структурам.
III закон двухстороннее проведение возбуждения . Распространение ПД по мембране нервного волокна возможно в обе стороны, так как строение мембраны на всем протяжении одинаково. В то же время возбуждение не может возвратиться в участок, где оно возникло, так как он находится в состоянии рефрактерности.

Парабиоз. Н.Е. Введенский, исследуя прохождение импульса через отрезок нерва на который воздействую химические или наркотические вещества (альтераторы), наблюдал резкое снижение лабильности. Парабиоз характеризуется постепенным развитием, в котором можно выделить четыре фазы:
I Продромальная (не всегда проявляется, так как очень кратковременная) характеризуется: повышением возбудимости, повышением лабильности.
II Уравнительная – эффекты от сильных и слабых раздражителей уравновешиваются.
III Парадоксальная - на сильные, либо частые раздражения эффект бывает меньше, чем на слабые или редкие.
IV Тормозная – ни сильные, ни слабые раздражения не вызывают сокращения мышц. Через поражённый участок не проходят импульсы.

Если второй парой электродов подействовать на поражённый участок, то возбуждение будет, т.е. ткань ещё жива.
Если снять альтератор, то ткань возвращается к исходному состоянию в обратном порядке фаз IV, III, II, I.
Парабиоз – это стойкое не распространяющееся возбуждение.
Возникают потенциалы меньшие по своей амплитуде, а дальше абортивные потенциалы, не способные распространяться: уменьшаются процессы Na-евой проницаемости, и увеличиваются процессы Na-евой инактивации.

Нервно-мышечная передача.
Взаимодействие человека с внешней средой не возможно представить без его мышечной системы. Производимые движения скелетной мускулатурой необходимы как для выполнения простейших перемещений тела в пространстве, сложных манипуляций хирурга, стоматолога, выражения самых тонких чувств и мыслей с помощью речи, мимики, жестов. Работа сердца обеспечивает кровоснабжение всех органов, работа гладких мышц создает условия для нормального осуществления физиологических процессов, обеспечивающих гомеостаз, практически во всех системах: гастроинтестинальной, сердечно-сосудистой, выделительной, репродуктивной, дыхательной. Ведущая роль скелетной мускулатуры также в производстве тепла и поддержании температуры тела. Мышцы - это «машины», преобразующие химическую энергию в механическую (работу) и тепло. Масса мышц больше чем других органов, 40-50% от массы тела.
В естественных условиях (в нашем организме) возбуждение мышечного волокна (или нескольких мышечных волокон, составляющих мышцу) возникает в результате передачи возбуждения с нервного волокна на мембрану мышечного в местах контакта нерва и мышцы: нервно-мышечных синапсах.

Механизм нервно-мышечной передачи
Синапсы представляют собой коммуникационные структуры, которые формируются окончанием нервного волокна и прилегающей к нему мембраной мышечного волокна (пресинаптической нервной и постсинаптической мышечной мембранами) (рис.2).


Рис.2. Мионевральный синапс.

Когда нервный импульс достигает окончания аксона, на деполяризованной пресинаптической мембране открываются потенциалзависимые Са2+ каналы. Вход Са2+ в аксональное расширение (пресинаптическую мембрану) способствует высвобождению химических нейромедиаторов, находящихся в виде везикул (пузырьков) из окончания аксона. Медиаторы (в нервно-мышечном синапсе это всегда ацетилхолин) синтезируются в соме нервной клетки и путем аксонального транспорта транспортируются к окончанию аксона, где и выполняют свою роль. Медиатор диффундирует через синаптическую щель и связывается со специфическими рецепторами на постсинаптической мембране. Так как медиатором в нервно-мышечном синапсе является ацетилхолин, то рецепторы постсинаптической мембраны называют холинорецепторами. В результате этого процесса на постсинаптической мембране открываются хемочувствительные Nа+-каналы, возникает деполяризация, величина которой различна, и зависит от количества выделенного медиатора. Чаще всего возникает локальный процесс, который называют потенциалом концевой пластинки (ПКП). При повышении частоты стимуляции нервного волокна, усиливается деполяризация пресинаптической мембраны, а, следовательно, возрастает количество выделяемого медиатора и число активированных хемочувствительных Nа+каналов на постсинаптической мембране. Таким образом, возникают ПКП, которые по амплитуде деполяризации суммируются до порогового уровня, после чего, на мембране мышечного волокна, окружающей синапс, возникает ПД, который обладает способностью к распространению вдоль мембраны мышечного волокна. Чувствительность постсинаптической мембраны регулируется активностью фермента – ацетилхолинэстеразы (АЦХ-Э), который гидролизует медиатор АЦХ на составные компоненты (ацетил и холин) и возвращает назад – в пресинаптическую бляшку для ресинтеза. Без удаления медиатора на постсинаптической мембране развивается длительная деполяризация, которая ведет к нарушению проведения возбуждения в синапсе – синаптической депрессии. Таким образом, синаптическая связь обеспечивает одностороннее проведение возбуждения с нерва на мышцу, однако на все эти процессы расходуется время (синаптичекая задержка), что приводит к низкой лабильности синапса по сравнению с нервным волокном.
Таким образом, нервно-мышечный синапс является «выгодным» местом, куда можно воздействовать фармакологическими препаратами, изменяя чувствительность рецептора, активность фермента. Эти явления будут часто встречаться в практике врача: например, при отравлении токсином ботулизма – блокируется высвобождение медиатора АЦХ (разглаживание морщин в косметической медицине), блокада холиноререпторов (курареподобными препаратами, бунгаротоксином) нарушает открытие Nа+ каналов на постсинаптической мембране. Фосфоорганические соединения (множество инсектицидов) нарушает эффективность АЦХ-Э и вызывает длительную деполяризацию постсинаптической мембраны. В клинике используют специфические блокаторы нервно-мышечного проведения: блокада холинорецепторов курареподобными препаратами, сукцинилхолином и другими конкурентными ингибиторами, вытесняющими АЦХ с холинорецептора. При заболевании миастении из-за дефицита холинорецепторов на постсинаптической мембране (из-за их аутолитического разрушения) возникает прогрессирующая мышечной слабость, вплоть до полной остановки мышечных сокращений (остановка дыхания). В этом случае используют блокаторы АЦХ-Э, что приводит к увеличению длительности связывания медиатора с меньшим количеством холинорецепторов и несколько увеличивает амплитуду деполяризации постсинаптической мембраны.

Физиология мышц.
Существует 3 типа мышечной ткани: поперечно-полосатая, сердечная, гладкая.
Скелетная мышечная ткань образует большой объем соматической мускулатуры. Содержит хорошо выраженное упорядоченное строение сократительных белков в виде поперечной исчерченности. Связей между отдельными мышечными волокнами нет. Регуляция сокращений происходит сознательно.
Сердечная мышца содержит также поперечную исчерченность, но является функциональным синцитием. Благодаря наличию пейсмекерных клеток, обладает способностью генерировать спонтанные нервные импульсы, обеспечивающие сердечные сокращения.
В гладких мышцах нет поперечной исчерченности, которая бы придавала определенные физические и физиологические свойства этой ткани. Так в отличие от скелетной, которой присуща высокая эластичность, в гладкой мышце больше выражено свойство пластичности, что обусловлено отсутствием четкой упорядоченности миофиламентов актина и миозина. В отличие от регулярной саркомерной структуры скелетных и сердечной мышц, тонкие филаменты гладких мышц присоединены к структурам в цитоплазме, называемым плотными тельцами (прикрепительными бляшками сарколеммы), состоящими из белка десмина . Гладкие мышцы бывают висцеральные (мультиунитарные) и полиэлементные (унитарные).
Висцеральные содержат мостики- щелевые контакты с низким сопротивлением электрическому току – синцитий. Висцеральные мышцы встречаются в стенках полых органов (кишечник, матка, мочеточники, мочевой пузырь).
Полиэлементные гладкие мышцы состоят из отдельных мышечных единиц без соединительных мостиков, поэтому для них характерны точные, четко дозированные сокращения, подобно скелетным. Однако, сокращения этих мышц нельзя контролировать, в отличие от скелетных (мышцы радужки глаза, цилиарного тела, семенных протоков, артерии). Благодаря своему строению (висцеральные) обладают большой пластичностью, однако при определенной предельной степени растяжения способны деполяризоваться и сокращаться (саморегуляция). Пример, давление внутри стенок мочевого пузыря мало изменяется при относительно небольшом его растяжении, если растяжение возрастает резко – происходит сокращение мышц детрузора – эвакуация мочи даже в тех случаях, когда иннервация нарушена. Полиэлементные гладкие мышцы имеют более мощную (плотную) иннервацию и слабое развитие межклеточных контактов (нексусов). Тонус этих мышц и его колебания имеют нейрогенную природу. Имеют парасимпатические и симпатические, а также метасимпатические волокна. Строение нервных окончаний в гладкой мышце отличается от строения нервно-мышечного синапса в скелетной мышцы. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холинергических нервных волокон имеются утолщения, называемые варикозами. Они содержат гранулы с медиатором, который выделяется из каждой варикозы. Клетки, лишенные непосредственных контактов с варикозами, активируются ПД, распространяющимися через нексусы на соседние клетки. По ходу следования нервного волокна мышечные клетки могут возбуждаться или тормозиться (стимуляция адренергических волокон уменьшает, а холинергических – увеличивает мышечную активность, в других, например в сосудах, норадреналин – усиливает, а ацетилхолин – уменьшает мышечный тонус. Ионная природа гладкой мышцы определяется особенностями каналов мембраны гладко-мышечной клетки. Основную роль в механизме генерации ПД играют ионы Са2+, но по этим каналам могут внутрь клетки двигаться и другие двухвалетные ионы Ва2+, Mg2+. Вход Са2+ в клетку необходим для поддержания тонуса мышц и развития сокращения, поэтому блокирование Са2+ каналов гладких мышц приводит к ограничению поступления этого иона в цитоплазму миоцитов внутренних органов и сосудов, что широко используется в практической медицине для коррекции моторной функции ЖКТ и тонуса сосудов.
Регуляция мышечных сокращений зависит от объема иннервации. Аксон спинно-мозгового (двигательного) мотонейрона ветвится на несколько терминалей (веточек), каждая из которых подходит к одному мышечному волокну. Поэтому в целостном организме, при возбуждении 1 нервного волокна сокращается группа мышц. Совокупность двигательного нейрона и мышечных волокон, которые он иннервирует называют двигательной единицей. Количество мышечных волокон, входящих в двигательную единицу, различно и зависит о функции, которую реализует каждая конкретная мышца в организме. В мышцах глаз, кисти руки, которые обеспечивают высокоточные, координированные движения, 1 двигательная единица содержит 3-5 мышечных волокон. Двигательные единицы мышц спины, бедра – состоят из нескольких сотен мышечных волокон, которые регулируются одним мотонейроном.
Вернемся к мембране мышечного волокна, на которой распространяется ПД, возникший в результате «успешного» проведения возбуждения через синапс. Продолжением мембраны мышечного волокна является саркотубулярная система, образующая поперечные инвагинации (впячивания) (Т-система поперечных трубочек). Система Т-трубочек выполняет несколько важных функций: является внутриклеточным депо ионов Са2+; сообщается с внеклеточной жидкостью и таким образом регулируется содержание Са2+ в ней; содержит потенциалчувствительные Nа+ каналы, которые дают возможность ПД распространяться как вдоль, так и вглубь мышечного волокна. Система Т-трубочек обеспечивает быстрое и согласованное возбуждение мышечной клетки, так как распространение деполяризации по Т-системе сопряжено с выходом Са2+ из цистерн саркоплазматического ретикулума, обеспечивает инициацию сокращения мышцы. Через Т-трубочки может происходить выделение продуктов обмена (например, молочной кислоты) из мышечной клетки в интерстиций (межклеточное пространство) и далее в кровь. Большой объем клетки скелетной мышцы невозможно было бы активировать быстро, если бы Са2+ поступал из внеклеточной среды. Накоплению Са2+ в саркоплазматическом ретикулуме способствует белок (кальсеквестрин), который непрочно связывает Са2+ в ретикулуме. Высвобождение Са2+ из саркоплазматического ретикулума в скелетных мышцах происходит благодаря взаимодействию Т трубочек и концевых цистерн (триада).
Ионы Са2+ попав в саркоплазму инициируют сокращение, связываясь с белком тропонином – блокатором актина в покое (рис.3).


Рисунок. 3. Механизм мышечного сокращения.

Тонкая нить актина состоит из 2 тяжей фибриллярного актина, на котором нанизаны отдельные глобулы мономера актина (как бусы). Актин содержит активные центры (сайты) связывания с миозином, которые в состоянии покоя заблокированы тропонином. Тропонии подавляет АТФ-азную активность миозина, что делает невозможным расщепление АТФ и мышечные волокна пребывают в расслабленном состоянии. Крупный сократительный белок – миозин, состоящий из 6 полипептидных цепей, уложенных попарно. 2 из них - тяжелые цепи миоглобина, обладающие свойством ферментов. Связанный с трононином Са2+ освобождает активные центры актина для контакта с миозином. В присутствии актина миозиновый фермент (глобулярная головка) разрушает АТФ и взаимодействует с тонкими нитями актина, создавая движущую силу сокращения – образуя поперечные мостики («гребки») и мышца укорачивается (сокращается). Таким образом, АТФ обеспечивает сокращение энергией, гидролизуясь на глобулярных головках миозина. Энергия (Э) которая высвобождается при гидролизе АТФ, превращается в силу сокращения за счет конформационных (пространственных) изменений в миозине (рабочий ход - образование поперечных гребковых мостиков) – это тепло активации, выделяющее при связывании актина и миозина. АДФ, связанная с миозином, уменьшает сродство поперечного мостика к активному центру актина, что инициирует следующую фазу – мышечное расслабление. За счет гидролиза АТФ выделяется Э (тепло укорочения), которая идет на:

1) работу Са-АТФ-азы, (активация насоса происходит за счет неорганического фосфата, образующегося при гидролизе АТФ),
2) за счет Э происходит откачивание против градиента концентрации Са2+ назад в саркоплазматический ретикулум (активный транспорт).
3) АТФ в мышечной клетке обеспечивает работу Na+-К-АТФ-азы, обеспечивающей удаление Na+ из клетки и восстановление потенциала покоя (а, следовательно, и возбудимости) мышечной клетки.

АТФ обеспечивает процессы, как сокращения, так и расслабления. Если Са2+ не будет транспортироваться назад в СПР, то расслабление не наступит, развивается ригидность мышцы (при трупном окоченении), или в живом организме – при посттетанической контрактуре – накопление Са2+ в саркоплазме инициирует длительное мышечное сокращение вне поступления ПД через синапс на мембрану мышечного волокна.
Гладкая мышца содержит также тропомиозин, но не имеет тропонина, соотношение актина к миозину 14-16 к 1, сравните в скелетных соотношение актина к миозину 2 к 1. Гладкая мышца имеет щелевые контакты – это мостики, соединяющие мембраны соседних клеток. Регуляция сократительной активности гладких мышц происходит благодаря связыванию Са2+ с кальмодулином, активирующим киназу легкой цепи миозина, которая приводит к гидролизу АТФ и запускает цикл образования поперечных мостиков.
ПД скелетной мышцы длится около 2-4- мс и проходит по мембране мышечного волокна со скоростью около 5 м/с. 1 ПД вызывает одиночное мышечное сокращение, которое начинается через 2 мс после начала деполяризации мембраны (латентный период) и завершается сокращение почти одновременно с реполяризацией. Длительность одиночного сокращения различна и зависит от типа мышечной ткани. При частых стимулах развивается суммарное мышечное сокращение всех мышечных волокон, обладающих различным сопротивлением мембран к электрическому току. Однако, незначительные отличия порогов возбуждения обеспечивают синхронность мышечного сокращения целой мышцы. Наличие абсолютного рефрактерного периода около 1-3 мс, обуславливает возникновение различных видов тетанусов (суммарных мышечных сокращений). Существует зубчатый и гладкий тетанусы. Частота стимуляции мышцы для развития гладкого тетануса должна быть выше, чем для развития зубчатого. Стимул должен попадать в фазу укорочения мышцы, если же мышцы начала расслабляться, а мы ее стимулирует, то получаем – зубчатый тетанус. Минимальный промежуток времени между последовательными эффективными стимулами во время тетануса не может быть меньше рефрактерного периода, которые приблизительно соответствует длительности ПД. Поскольку мышцы состоят из мышечных волокон с различным уровнем возбудимости, имеется определенная зависимость между величиной стимула и ответной реакцией. Увеличение силы сокращения возможно до определенного предела, после которого амплитуда сокращения остается неизменной при увеличении амплитуды стимула (надо отметить, то в мышце суммируются не ПД, а сокращения). При этом все волокна, входящие в состав мышцы принимают участие в сокращении.
В организме человека имеются быстрые, фазные мышечные волокна (белые), длительность сокращения которых до 7,5 мс, и медленные, тонические (красные), которые обеспечивают сильные и мощные движения, длящиеся до 100 мс. Красные (тонические) имеют много волокон миозина типа I, которые отличаются низкой активностью АТФ-азы миозина. Скорость расщепления АТФ является фактором, предопределяющим частоту гребковых движений, и таким образом, скорость скольжения нитей актина вдоль миозина. Из СПР Са2+ транспортируется медленно, высокая окислительная способность, много капилляров, много миоглобина в структуре миозина (тяжелые цепи), много митохондрий. На стимул реагируют медленно, имеют длительный латентный период сокращения, поэтому способны к длительным, медленным, тоническим сокращениям, более резистентны к утомлению. Главная функция – поддержание положения тела. Белые мышцы содержат волокна миозина II типа. Гликолитический тип окисления, мало миоглобина, митохондрий, это волокна большого диаметра с высокой активность АТФ-азы миозина, способны развить значительную силу, но быстро утомляются.

Сила мышц определяется тем максимальным грузом, который мышца в состоянии чуть-чуть приподнять. Сила различных мышц неодинакова. Для сравнения силы разных мышц максимальный груз, который мышца в состоянии поднять делят на число квадратных сантиметров ее физиологического поперечного сечения. Силовые характеристики выше у мышц с перистым (косым) расположением волокон, при этом физиологическое сечение больше геометрического поперечного сечения. Сумма поперечного сечения не всегда совпадает с физиологическим сечением мышцы (только при параллельном расположении волокон.

Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, которую развивает нерастянутая мышца. Происходит суммирование пассивного напряжения, обусловленного наличием эластических компонентов мышцы, и активного сокращения (переход к правилу средних нагрузок – физиологический механизм данного закона). Способность совершать работу определяется произведением величины поднятого груза на высоту подъема. Величина работы мышцы постепенно увеличивается с увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение массы груза приводит к снижению величины работы, так как высота подъема груза резко падает. Следовательно, максимальная работа совершается мышцей при средних величинах нагрузок. Сила сокращения и работа не остаются постоянными при статической и динамической работе. В результате продолжительной деятельности работоспособность скелетной мускулатуры понижается. Это явление называют утомлением. При этом снижается сила сокращений, увеличивается латентный период сокращения и период расслабления. Статический режим работы более утомителен, чем динамический (почему объяснить). Накапливаются продукты процессов окисления- молочная пировиноградная кислота, которые снижают возможность генерирования ПД. Нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для энергетического обеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической работе в основном определяется неадекватным регионарным кровотоком. Возникает «кислородное голодание» и утомление прогрессивно нарастает.
В 1903 году Сеченов – восстановление работоспособности утомленной мышцы значительно ускоряется при совершении работы другой мышцей в период отдыха утомленной – такой отдых называют активным. Однако высокий уровень умственной деятельности ускоряет процессы развития утомления в мышечной системе (утомление нервных центров).



 

Возможно, будет полезно почитать: