От чего зависит сила человека. Сила мышц

Сила мышцы - количественная мера, выражающая способность мышцы к сокращению во время противодействия её внешней силе, в том числе силе тяжести. Клиническое исследование силы мышц прежде всего выявляет её снижение. Предварительную, ориентировочную оценку мышечной силы начинают с выяснения того, может ли обследуемый осуществлять активные движения во всех суставах и совершаются ли эти движения в полном объёме.

Обнаружив ограничения, врач производит пассивные движения в соответствующих суставах, чтобы исключить местные поражения опорно-двигательного аппарата (мышечные и суставные контрактуры). Ограничение пассивных движений в суставе, вызванное костно-суставной патологией, не исключает, что у больного может быть снижена силы мышц. В то же время отсутствие или ограничение активных произвольных движений при полном объёме пассивных движений у бодрствующего и сотрудничающего с врачом пациента свидетельствует, что причиной расстройства, скорее всего, является патология нервной системы, нервно-мышечных соединений или мышц.

Термином «паралич » (плегия) обозначают полное отсутствие активных движений, обусловленное нарушением иннервации соответствующих мышц, а термином «парез» - снижение мышечной силы. Паралич мышц одной конечности называют моноплегией, паралич нижних мимических мышц, руки и ноги на одной и той же стороне тела - гемиплегией; паралич мышц обеих ног - параплегией, паралич мышц всех четырех конечностей - тетраплегией.

Паралич/парез может быть результатом поражения как центрального (верхнего), так и периферического (нижнего) двигательного нейрона. Соответственно выделяют два типа паралича: периферический (вялый) паралич возникает вследствие поражения периферического двигательного нейрона; центральный (спастический) - в результате поражения центрального двигательного нейрона.

Поражение центрального мотонейрона (например, при церебральном инсульте) затрагивает мышцы конечностей в разной степени. На руке преимущественно страдают абдукторы (отводящие мышцы) и экстензоры (разгибатели), а на ноге - флексоры (сгибатели). Для поражения пирамидной системы на уровне внутренней капсулы (где аксоны пирамидных клеток Беца расположены очень компактно) характерно формирование патологической позы Вернике-Манна: рука пациента согнута и приведена к туловищу, а нога разогнута и при ходьбе отводится в сторону так, что стопа совершает движение по дуге («рука просит, нога косит»).

При патологии периферического двигательного нейрона каждый уровень поражения (вовлекающий передние рога спинного мозга, корешок спинномозгового нерва, сплетение либо периферический нерв) имеет характерный тип распределения мышечной слабости (миотом, невротом). Мышечная слабость бывает не только нейрогенной: она встречается и при первичном поражении мышц (миопатии), и при патологии нервно-мышечного синапса (миастения). Поражение сустава может сопровождаться значительным ограничением движений в нём из-за болей, поэтому при болевом синдроме судить о мышечной слабости и о наличии неврологической патологии нужно с осторожностью.

Оценка мышечной силы

Для оценки мышечной силы пациента просят выполнить движение, требующее сокращения определённой мышцы (мышц), зафиксировать позу и удерживать мышцу в положении максимального сокращения, в то время как исследователь старается преодолеть сопротивление испытуемого и растянуть мышцу. Таким образом, при исследовании силы мышц в клинической практике чаще всего руководствуются принципом «напряжения и преодоления» : врач противодействует напрягаемой пациентом исследуемой мышце и определяет степень требующихся для этого усилий. По очереди исследуют различные мышцы или группы мышц, сравнивая правую и левую стороны (так легче выявить незначительную мышечную слабость).

Важно соблюдать определённые правила обследования. Так, при оценке силы мышц, отводящих плечо, врач должен стоять перед пациентом и оказывать сопротивление движению одной только рукой (но не склоняться над сидящим больным, оказывая давление на руку пациента всей массой тела). Аналогично, оценивая силу сгибателей пальцев, врач использует только свой палец, эквивалентный тестируемому, но не применяет силу всей кисти или руки в целом. Необходимо также делать поправки на детский или пожилой возраст пациента. Силу мышц обычно оценивают в баллах, чаще всего по 6-балльной системе.

Критерии оценки силы мышц по 6-балльной системе

При исследовании неврологического статуса необходимо выяснить силу следующих мышечных групп.

  • Сгибатели шеи: m. sternodeidomastoideus (n. accessories, С 2 -С 3 - пп. cervicales).
  • Разгибатели шеи: mm. profundi colli (C 2 -C 4 - nn. cervicales).
  • Пожимание плечами: m. trapezius (n. accessories, С 2 -С 4 - nn. cervicales).
  • Отведение плеча: m. deltoideus (C 5 -C 6 - n. axillaris).
  • Сгибание супинированной руки в локтевом суставе: m. biceps brachii (C 5 -C 6 - n. musculocutaneus).
  • Разгибание руки в локтевом суставе: m. triceps brachii (C 6 -C 8 - n. radialis).
  • Разгибание в лучезапястном суставе: mm. extensores carpi radialis longus et brevis (C 5 -C 6 - n. radialis), m. extensor carpi ulnaris (C 7 -C 8 - n. radialis).
  • Противопоставление большого пальца кисти: m. opponens pollicis (C 8 -T 1 - п. medianus).
  • Отведение мизинца: m. abductor digiti minimi (C 8 -T 1 - n. ulnaris).
  • Разгибание основных фаланг II-V пальцев: m. extensor digitorum communis, m. extensor digiti minimi, m. extensor indicis (C 7 -C 8 - n. profundus n. radialis).
  • Сгибание бедра в тазобедренном суставе: m. iliopsoas (L 1 -L 3 - n.femoralis).
  • Разгибание ноги в коленном суставе: m. quadricepsfemoris (L 2 -L 4 - n.femoralis).
  • Сгибание ноги в коленном суставе: m. biceps femoris, m. semitendinosus, m. semimembranosus (L 1 -S 2 - n. ischiadicus).
  • Разгибание (тыльное сгибание) стопы в голеностопном суставе: m. tibialis anterior (L 4 -L 5 - n. peroneus profundus).
  • Подошвенное сгибание стопы в голеностопном суставе: m. triceps surae (S 1 -S 2 - n. tibialis).

Вышеперечисленные группы мышц оценивают с помощью следующих тестов.

  • Сгибание шеи - тест для определения силы грудино-ключично-сосцевидных и лестничных мышц. Больного просят наклонить (но не выдвигать) голову в сторону, а лицо повернуть в сторону, противоположную наклону головы. Врач противодействует этому движению.
  • Разгибание шеи - тест, позволяющий определить силу разгибателей головы и шеи (вертикальной порции трапециевидной мышцы, ременных мышц головы и шеи, мышц, поднимающих лопатки, полуостистых мышц головы и шеи).

Пациента просят наклонить голову назад, оказывая противодействие этому движению.

Пожимание плечами - тест, с помощью которого определяют силу трапециевидной мышцы. Больному предлагают «пожать плечами», преодолевая противодействие врача.

Отведение плеча - тест для определения силы дельтовидной мышцы. Пациент по просьбе врача отводит плечо в сторону по горизонтали; руку при этом рекомендуется согнуть в локтевом суставе. Оказывают сопротивление движению, пытаясь опустить его руку. Следует учитывать, что способность дельтовидной мышцы удерживать плечо в отведённом положении нарушается не только при слабости этой мышцы, но и тогда, когда нарушены функции трапециевидной, передней зубчатой и других мышц, стабилизирующих плечевой пояс.

Сгибание супинированной руки в локтевом суставе - тест, предназначенный для определения силы двуглавой мышцы плеча. Двуглавая мышца плеча участвует в сгибании и одновременной супинации предплечья. Для исследования функции двуглавой мышцы плеча врач просит испытуемого супинировать кисть и сгибать руку в локтевом суставе, оказывая сопротивление этому движению.

Разгибание руки в локтевом суставе - тест, используемый для определения силы трёхглавой мышцы плеча. Врач становится сзади или сбоку от пациента, просит его разогнуть руку в локтевом суставе и препятствует этому движению.

  • Разгибание в лучезапястном суставе - тест, помогающий определить силу лучевого и локтевого разгибателей кисти. Пациент разгибает и приводит кисть с выпрямленными пальцами, а врач препятствует этому движению.
  • Противопоставление большого пальца кисти - тест для определения силы мышцы, противопоставляющей большой палец. Обследуемому предлагают крепко прижать дистальную фалангу большого пальца к основанию проксимальной фаланги мизинца той же кисти и сопротивляться попытке разогнуть основную фалангу большого пальца. Используют и тест с полоской плотной бумаги: предлагают сжать её между I и V пальцами и испытывают силу прижатия.
  • Отведение мизинца - тест для определения силы мышцы, отводящей мизинец. Врач пытается привести к остальным пальцам отведённый мизинец пациента вопреки его сопротивлению.
  • Разгибание основных фаланг II-V пальцев - тест, применяемый для определения силы общего разгибателя пальцев кисти, разгибателя мизинца и разгибателя указательного пальца. Больной разгибает основные фаланги II-V пальцев кисти, когда средние и ногтевые согнуты; врач преодолевает сопротивление этих пальцев, а другой рукой фиксирует его лучезапястный сустав.

Сгибание бедра в тазобедренном суставе - тест, позволяющий определить силу подвздошной, большой и малой поясничных мышц. Просят сидящего больного согнуть бедро (привести его к животу) и одновременно, оказывая сопротивление этому движению, воздействуют на нижнюю треть бедра. Можно исследовать силу сгибания бедра и в положении пациента лёжа на спине. Для этого предлагают ему поднять выпрямленную ногу и удерживать её в таком положении, преодолевая давление вниз ладони врача, упирающейся в область середины бедра больного. Снижение силы этой мышцы относят к ранним симптомам поражения пирамидной системы. Разгибание ноги в коленном суставе - тест для определения силы четырёхглавой мышцы бедра. Исследование проводят в положении пациента лёжа на спине, нога согнута в тазобедренном и коленном суставах. Просят его разогнуть ногу, подняв голень. Одновременно подводят руку под колено пациента, придерживая его бедро в полусогнутом положении, другой рукой оказывают давление на голень по направлению книзу, препятствуя её разгибанию. Для тестирования силы этой мышцы пациента, сидящего на стуле, просят разогнуть ногу в коленном суставе. Одной рукой оказывают сопротивление этому движению, другой - пальпируют сокращающуюся мышцу.

  • Сгибание ноги в коленном суставе - тест, необходимый для определения силы мышц задней поверхности бедра (ишиокруральные мышцы). Исследование проводят в положении пациента лёжа на спине, нога согнута в тазобедренном и коленном суставах, стопа плотно соприкасается с кушеткой. Пытаются выпрямить ногу пациента, предварительно дав ему задание не отрывать стопу от кушетки.
  • Разгибание (тыльное сгибание) стопы в голеностопном суставе - тест, помогающий определить силу передней болыпеберцовой мышцы. Пациента, лежащего на спине с выпрямленными ногами, просят тянуть стопы по направлению к себе, несколько приводя внутренние края стоп, при этом врач оказывает сопротивление этому движению.
  • Подошвенное сгибание стопы в голеностопном суставе - тест, используемый для определения силы трёхглавой мышцы голени и подошвенной мышцы. Больной, лежащий на спине с выпрямленными ногами, совершает подошвенное сгибание стоп, вопреки противодействию ладоней врача, которые оказывают давление на стопы в противоположном направлении.

Более подробно методы исследования силы отдельных мышц туловища и конечностей описаны в руководствах по топической диагностике.

Приведённые выше приёмы оценки мышечной силы целесообразно дополнять некоторыми простыми функциональными тестами, предназначенными в большей степени для проверки функции всей конечности, чем для измерения силы отдельных мышц. Эти пробы важны для выявления незначительной мышечной слабости, которую врачу трудно заметить при фиксации внимания на отдельных мышцах.

  • Для выявления слабости в мышцах плеча, предплечья и кисти пациента просят максимально сильно сжать врачу три-четыре пальца руки и во время пожатия стараются высвободить свои пальцы. Тест проводят одновременно на правой и левой руке, чтобы сравнить их силу. Следует учитывать, что сила пожатия в большей степени зависит от сохранности мышц предплечья, поэтому при слабости мелких мышц кисти рукопожатие может оставаться довольно сильным. Точно измерить силу сжатия кисти можно с помощью динамометра. Тест сжатия кисти позволяет выявить не только слабость мышц руки, но и феномен миотонии действия, наблюдаемый при таких наследственных нервно-мышечных заболеваниях, как дистрофическая и врождённая миотония. После сильного сжатия своей кисти в кулак или сильного пожатия чужой руки больной с феноменом миотонии действия не может быстро разжать свою кисть.
  • Для выявления слабости в проксимальных отделах ног обследуемый должен встать из положения сидя на корточках без помощи рук. У детей следует понаблюдать, каким образом они поднимаются из положения сидя на полу. Например, при миодистрофии Дюшенна ребёнок прибегает к вспомогательным приёмам при вставании («взбирание по самому себе»).
  • Для выявления слабости в дистальных отделах ног больному предлагают встать и походить на пятках и «носочках».
  • Центральный (пирамидный) парез рук можно выявить, предложив пациенту с закрытыми глазами удерживать выпрямленные руки с почти соприкасающимися ладонными поверхностями немного выше горизонтального уровня (проба Барре для верхних конечностей). Рука на стороне пареза начинает опускаться, при этом кисть сгибается в лучезапястном суставе и ротируется внутрь («пронаторный дрейф»). Эти постуральные расстройства считаются весьма чувствительными признаками центрального пареза, позволяющими выявлять его даже тогда, когда прямое исследование силы мышц не обнаруживает каких-либо нарушений.
  • У пациентов с подозрением на миастению важно установить, не нарастает ли слабость в мышцах головы, туловища и конечностей при нагрузке. Для этого они вытягивают перед собой руки и смотрят на потолок. В норме человек способен находиться в такой позе не менее 5 мин. Используют и другие провоцирующие мышечную утомляемость пробы (приседания, громкий счёт до 50, повторное открывание и закрывание глаз). Наиболее объективно миастеническое утомление можно выявить с помощью динамометра: измеряют силу сжатия кисти в кулак, затем пациент быстро выполняет 50 интенсивных сжатий обеих кистей в кулак, после чего вновь проводят динамометрию кистей. В норме сила сжатия кистей остаётся практически одинаковой до и после такой серии сжатий кистей в кулак. При миастении после физических напряжений мышц кисти сила сжатия динамометра снижается более чем на 5 кг.
  • Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

    1) обеспечивают определенную позу тела человека;

    2) перемещают тело в пространстве;

    3) перемещают отдельные части тела относительно друг друга;

    4) являются источником тепла, выполняя терморегуляционную функцию.

  • Свойства скелетной мышцы :

    1) Возбудимость - способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты - вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

    2) Низкая проводимость (10-13 м/с) - способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

    3) Сократимость - способность укорачиваться или развивать напряжение при возбуждении;

    4) Эластичность - способность развивать напряжение при растягивании.

    5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

    6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

  • Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

  • Сила мышц . Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила ); при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

    Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

    Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

    Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

    Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

    Величина сокращения снижается также при утомлении мышцы.

    Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой . Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

    Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

    В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

    Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

    Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

    Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

  • Работа мышц . Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

    Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

    Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

    Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

      (10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

      Виды сокращений .

      У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

      Одиночное сокращение - это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы.

      Фазы одиночного мышечного сокращения :

      Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

      Период укорочения, или развития напряжения.

      Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

      При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением , или тетанусом.

      Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

      Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

      При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

      Для скелетной мышцы характерны два основных режима сокращения - изометрический и изотонический.

      Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

      При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

      Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы - тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

      Пессимум - угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза . Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки - 0,02-0,03 сек). Это время определяет функциональные возможности нервных окончаний - их лабильность . Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение - парабиоз , блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.

    Понятия о мышечной силе.

    Сила человека представляет собой его способность справляться с внешним сопротивлением либо противодействовать ему благодаря мышечным усилиям. Если не развивать физическую силу, то и овладеть спортивным мастерством не получится. Ведь она в большей степени определяет быстроту движений, а так же играет огромную роль в работе, которая требует ловкости и выносливости.

    Сила мышцы напрямую зависит от сократительной силы ее мышечных волокон, то есть от размера физиологического поперечника, проходящего через все ее волокна и равного площади поперечного сечения (исчисляется в см2).

    Большая часть мышц человека имеют перистое строение, то есть их волокна друг к другу расположены под углом. Существуют мышцы, которые имеют параллельное и веретенообразное местоположение волокон. Так, к примеру, протяжные мышцы имеют параллельный ход волокон, а двуглавая мышца бедра наоборот – веретенообразный.

    У перистых мышц при такой точно толщине, что и у мышц с веретенообразным и параллельным расположением волокон, больше физиологический поперечник, так как мышечных волокон в нем укладывается больше. Как результат перистая мышца мощнее.

    Основная способность перистого строения мышц – это формирование мышечного напряжения. Если они проигрывают в величине укорочения, то в силе сокращения они выигрывают. Мышцам с веретенообразными мышцами и параллельными волокнами в большей степени характерно значительные трансформации длинны, что обеспечивает в различных суставах более выраженные движения.

    Мышцы отличаются также и по анатомическому поперечнику, так называемому поперечному сечению, которое перпендикулярно к длине мышцы не учитывая особенностей расположения в ней волокон. Поэтому чем анатомический поперечник больше, тем толще мышца, тем она может развивать большую силу. При равных прочных условиях сила соразмерна поперечному сечению мышцы, а высота сокращения – соразмерна длине мышечных волокон.

    Например, одиночная двигательная единица, которая состоит из 100 волокон, способна развивать силу в 10-20 г. Большая часть скелетных мышц обладает силой, которая превышает вес тела. Все человеческие мышцы содержат порядка 300 млн. волокон. Поэтому если бы они функционировали в одну сторону, то способны били бы развить силу, равную 25 тоннам.

    На скорость сократительного акта определенное влияние оказывает строение мышц – перистые мышцы являются наиболее «быстрыми».

    Быстрая сила мышц является понятием обобщенным и относительным. Сила, которая проявляется в быстрых движениях, обладает множеством качественных оттенков, и порой между ними довольно сложно провести грань. Приблизительно дифференцируя, можно определить две основополагающие группы движений, которые требуют быструю силу: первая, движения, где играет роль преимущественно быстрота перемещения при преодолении сравнительно небольшого сопротивления, вторая, движения, при которых рабочий эффект зависит от быстроты развития двигательного усилия при преодолении существенного сопротивления. Абсолютная сила мышц для выполнения первых движений не имеет существенной роли, а для вторых движений ее величина значима в рабочем эффекте.

    Для первой группы различают движения, которые связаны со скоростью реагирования на определенный сигнал извне либо в целом ситуацию, со скоростью однократных отдельных напряжений и с частотой повторяемых напряжений. Во второй группе стоит выделить движения по разновидности напряжения мышц: имеющее изометрическое взрывное напряжение (они связаны с одолением сравнительно большого отягощения и если нужно быстро развить максимальную силу), с баллистическим взрывным напряжением (стремительное преодоление сопротивления, незначительного по весу), и с взрывным реактивным баллистическим напряжением, при котором главное рабочее усилие развивается немедленно после того, как мышцы предварительно растянутся.

    Следовательно, проявление быстрой силы очень разнообразно, ее природа довольно специфична, она обнаруживает сравнительно плохой «перенос» при движении и относительно медленный темп развития.

    Это способность человека преодолевать внешнее сопротивление или противостоять ему за счёт мышечных усилий (напряжений).

    Сила человека представляет собой его способность справляться с внешним сопротивлением либо противодействовать ему благодаря мышечным усилиям. Если не развивать физическую силу, то и овладеть спортивным мастерством не получится. Ведь она в большей степени определяет быстроту движений, а так же играет огромную роль в работе, которая требует ловкости и выносливости.

    Сила мышцы напрямую зависит от сократительной силы ее мышечных волокон, то есть от размера физиологического поперечника, проходящего через все ее волокна и равного площади поперечного се
    чения (исчисляется в см2).

    Большая часть мышц человека имеют перистое строение, то есть их волокна друг к другу расположены под углом. Существуют мышцы, которые имеют параллельное и веретенообразное местоположение волокон. Так, к примеру, протяжные мышцы имеют параллельный ход волокон, а двуглавая мышца бедра наоборот – веретенообразный.

    У перистых мышц при такой точно толщине, что и у мышц с веретенообразным и параллельным расположением волокон, больше физиологический поперечник, так как мышечных волокон в нем укладывается больше. Как результат перистая мышца мощнее.

    Основная способность перистого строения мышц – это формирование мышечного напряжения. Если они проигрывают в величине укорочения, то в силе сокращения они выигрывают. Мышцам с веретенообразными мышцами и параллельными волокнами в большей степени характерно значительные трансформации длинны, что обеспечивает в различных суставах более выраженные движения.

    Мышцы отличаются также и по анатомическому поперечнику, так называемому поперечному сечению, которое перпендикулярно к длине мышцы не учитывая особенностей расположения в ней волокон. Поэтому чем анатомический поперечник больше, тем толще мышца, тем она может развивать большую силу. При равных прочных условиях сила соразмерна поперечному сечению мышцы, а высота сокращения – соразмерна длине мышечных волокон.

    Например, одиночная двигательная единица, которая состоит из 100 волокон, способна развивать силу в 10-20 г. Большая часть скелетных мышц обладает силой, которая превышает вес тела. Все человеческие мышцы содержат порядка 300 млн. волокон. Поэтому если бы они функционировали в одну сторону, то способны били бы развить силу, равную 25 тоннам.

    На скорость сократительного акта определенное влияние оказывает строение мышц – перистые мышцы являются наиболее «быстрыми».

    Быстрая сила мышц является понятием обобщенным и относительным. Сила, которая проявляется в быстрых движениях, обладает множеством качественных оттенков, и порой между ними довольно сложно провести грань. Приблизительно дифференцируя, можно определить две основополагающие группы движений, которые требуют быструю силу: первая, движения, где играет роль преимущественно быстрота перемещения при преодолении сравнительно небольшого сопротивления, вторая, движения, при которых рабочий эффект зависит от быстроты развития двигательного усилия при преодолении существенного сопротивления. Абсолютная сила мышц для выполнения первых движений не имеет существенной роли, а для вторых движений ее величина значима в рабочем эффекте.

    Для первой группы различают движения, которые связаны со скоростью реагирования на опр еделенный сигнал извне либо в целом ситуацию, со скоростью однократных отдельных напряжений и с частотой повторяемых напряжений. Во второй группе стоит выделить движения по разновидности напряжения мышц: имеющее изометрическое взрывное напряжение (они связаны с одолением сравнительно большого отягощения и если нужно быстро развить максимальную силу), с баллистическим взрывным напряжением (стремительное преодоление сопротивления, незначительного по весу), и с взрывным реактивным баллистическим напряжением, при котором главное рабочее усилие развивается немедленно после того, как мышцы предварительно растянутся.

    Следовательно, проявление быстрой силы очень разнообразно, ее природа довольно специфична, она обнаруживает сравнительно плохой «перенос» при движении и относительно медленный темп развития.

    Скелетные мышечные волокна подразделяются на быстрые и медленные. Скорость сокращения мышц различна и зависит от их функции. Например, быстро сокращается икроножная мышца, а глазная мышца сокращается еще быстрее.

    Рис. Типы мышечных волокон

    В быстрых мышечных волокнах более развит саркоплазматический ретикулум, что способствует быстрому выбросу ионов кальция. Их называют белыми мышечными волокнами.

    Медленные мышцы построены из более мелких волокон, и их называют красными из-за их красноватой окраски, обусловленной высоким содержанием миоглобина.

    Рис. Быстрые и медленные мышечные волокна

    Таблица. Характеристика трех типов волокон скелетных мышц

    Показатель

    Медленные оксидативные волокна

    Быстрые оксидативные волокна

    Быстрые гликолитические волокна

    Главный источник образования АТФ

    Окислительное фосфорилирование

    Гликолиз

    Митохондрии

    Капилляры

    Высокое (красные мышцы)

    Высокое (красные мышцы)

    Низкое (белые мышцы)

    Активность ферментов гликолиза

    Промежуточная

    Промежуточное

    Скорость утомления

    Медленная

    Промежуточная

    Активность АТФазы миозина

    Скорость укорочения

    Медленная

    Диаметр волокна

    Размер двигательной единицы

    Диаметр двигательного аксона

    Сила мышц

    Силу мышцы определяют по максимальной величине груза, который она может поднять, либо по максимальной силе (напряжению), которую она может развить в условиях изометрического .

    Одиночное мышечное волокно способно развить усилие 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одновременно, то могли бы создать напряжение 20-30 т.

    Сила мышц зависит от ряда морфофункциональных, физиологических и физических факторов.

    Расчет мышечной силы

    Сила мышц возрастает с увеличением площади их геометрического и физиологического поперечного сечения. Физиологическое поперечное сечение мышцы представляет собой сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно ходу мышечных волокон.

    В мышце с параллельным ходом волокон (например, портняжная мышца) площади геометрического и физиологического поперечных сечений равны. В мышцах с косым ходом волокон (межреберные) площадь физиологического сечения больше площади геометрического и это способствует увеличению силы мышц. Еще больше возрастают физиологическое сечение и сила у мышц с перистым расположением мышечных волокон, которое наблюдается в большинстве мышц тела.

    Для того чтобы иметь возможность сопоставить силу мышечных волокон в мышцах с различным гистологическим строением, используют понятие абсолютной силы мышцы.

    Абсолютная сила мышцы — максимальная сила, развиваемая мышцей, в перерасчете на 1 см 2 физиологического поперечного сечения. Абсолютная сила бицепса составляет 11,9 кг/см 2 , трехглавой мышцы плеча — 16,8, икроножной 5,9, гладких мышц — 1 кг/см 2 .

    где А мс — мышечная сила (кг/см 2); Р — максимальный груз, который способна поднять мышца (кг); S — площадь физиологического поперечного сечения мышцы (см 2).

    Сила и скорость сокращения , утомляемость мышцы зависят от процентного соотношения различных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у разных людей неодинаково.

    Различают следующие типы двигательных единиц:

    • медленные неутомляемые (имеют красный цвет), они развивают небольшую силу сокращения, но могут длительно находиться в состоянии тонического напряжения без признаков утомления;
    • быстрые, легко утомляемые (имеют белый цвет), их волокна развивают большую силу сокращения;
    • быстрые, относительно устойчивые к утомлению, развивающие относительно большую силу сокращения.

    У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено генетически и может значительно различаться. Чем больше в мышцах человека процент медленных волокон, тем более она приспособлена к длительной, но небольшой по мощности работе. Лица с высоким содержанием в мышцах быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при ее умеренном растяжении. Одним из объяснений этого свойства мышц является то, что при умеренном растяжении саркомера (до 2,2 мкм) увеличивается вероятность образования большего количества связей между актином и миозином.

    Рис. Соотношение между силой сокращения и длиной саркомера

    Рис. Соотношение между силой мышцы и ее длиной

    Сила мышц зависит от частоты нервных импульсов , посылаемых к мышце, синхронизации сокращения большого числа моторных единиц, преимущественного вовлечения в сокращение того или иного типа моторных единиц.

    Сила сокращений увеличивается:

    • при вовлечении в процесс сокращения большего количества моторных единиц;
    • при синхронизации сокращения моторных единиц;
    • при вовлечении в процесс сокращения большего количества белых моторных единиц.

    При необходимости развить небольшое усилие сначала активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. Если надо развить силу более 20-25% от максимальной, то в сокращение вовлекаются быстрые, легко утомляемые моторные единицы.

    При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, посылаемых к мышечным волокнам.

    При слабых сокращениях частота посылки нервных импульсов по аксонам мотонейронов составляет 5-10 имп/с, а при большой силе сокращения может доходить до 50 имп/с.

    В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, что связано с увеличением в них количества миофибрилл. Прирост числа волокон незначителен.

    При тренировке мышц у взрослых нарастание их силы связано с увеличением миофибрилл, а повышение их выносливости обусловлено увеличением числа митохондрий и получением АТФ за счет аэробных процессов.

    Имеется взаимосвязь силы и скорости сокращения мышцы. Скорость сокращения мышцы тем больше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров). Она уменьшается при увеличении нагрузки. Тяжелый груз можно поднять только при медленном движении. Максимальная скорость сокращения, достигаемая при сокращении мышц человека, около 8 м/с.

    Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность достигается при средней скорости укорочения мышц. Для мышц руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

    Сила сокращения и мощность мышцы снижаются при развитии утомления.



     

    Возможно, будет полезно почитать: